
Reusable Anonymous Return Channels

Philippe Golle
Stanford University

Stanford, CA 94305, USA

pgolle@cs.stanford.edu

Markus Jakobsson
RSA Laboratories

Bedford, MA 01730, USA

mjakobsson@rsasecurity.com

ABSTRACT
Mix networks are used to deliver messages anonymously to
recipients, but do not straightforwardly allow the recipient
of an anonymous message to reply to its sender. Yet the
ability to reply one or more times, and to further reply to
replies, is essential to a complete anonymous conversation.
We propose a protocol that allows a sender of anonymous
messages to establish a reusable anonymous return chan-
nel. This channel enables any recipient of one of these
anonymous messages to send back one or more anonymous
replies. Recipients who reply to different messages can not
test whether two return channels are the same, and there-
fore can not learn whether they are replying to the same
person. Yet the fact that multiple recipients may send mul-
tiple replies through the same return channel helps defend
against the counting attacks that defeated earlier proposals
for return channels. In these attacks, an adversary traces the
origin of a message by sending a specific number of replies
and observing who collects the same number of messages.
Our scheme resists these attacks because the replies sent
by an attacker are mixed with other replies submitted by
other recipients through the same return channel. Moreover,
our protocol straightforwardly allows for replies to replies,
etc. Our protocol is based upon a re-encryption mix net-
work, and requires four times the amount of computation
and communication of a basic mixnet.

Categories and Subject Descriptors
E.3 [Data]: Data Encryption

General Terms
Security

Keywords
Anonymity, Mix Networks, Privacy, Return Address

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WPES’03,October 30, 2003, Washington, DC, USA.
Copyright 2003 ACM 1-58113-776-1/03/0010 ...$5.00.

1. INTRODUCTION
A private communication channel allows anonymous com-

munication between parties. For example, it allows Alice to
send an anonymous message to Bob. But an anonymous
exchange is rarely limited to a single message. Often, Alice
may want to allow Bob to reply to her anonymous message,
and may then want to reply to Bob’s reply, etc. In this pa-
per, we propose the first practical protocol that allows two
parties to have a complete conversation in an anonymous
fashion.

The typical implementation of a private communication
channel relies on a cryptographic primitive called mix net-
work or mixnet, first proposed by Chaum [1]. A mixnet
takes as input a list of ciphertexts and outputs the list of
the corresponding plaintexts permuted in a random order.
The mixnet essentially hides the relationship between its
inputs and its outputs. Mixnets have been used for applica-
tions that require privacy, ranging from anonymous emails
to anonymous voting, anonymous payments, etc.

A mix network lets Alice send an anonymous message to
Bob as follows. Alice encrypts her message (including Bob’s
email address) under the public key of the mixnet. After the
mixnet has collected a sufficiently large batch of ciphertexts
submitted by different senders, it decrypts (or re-encrypts)
all these ciphertexts and delivers them (in a random order)
to their recipients. The identity of the sender of the message
is hidden from the recipient of the message. Unfortunately,
plain-vanilla mix networks do not permit anonymous replies.
Some extensions to the basic mixnet design allow for one
single anonymous reply without compromising the privacy
of the exchange. The limitation to a single reply, however,
is often too restrictive in practice. Other extensions allow
for multiple replies, but are vulnerable to traffic analysis
based on message counts: an adversary can trace the origin
of a message by sending a specific number of replies and
observing who collects the same number of messages.

The contribution of this paper is to design an extension
of a synchronous mixnet that allows a sender of anonymous
messages to establish a reusable anonymous return channel.
This channel allows any recipient of a message originating
with that sender to send back one or several anonymous
replies. We now define more precisely the functional prop-
erties of anonymous return channels:

1. Composable: our protocol permits anonymous replies,
as well as replies to replies, etc.

2. Reusable: a sender may use the same return channel
for different messages sent to different recipients. The

recipients can not test whether their return channels
are the same, yet they can each use the return channel
to send one or several anonymous replies. As already
noted, this helps defend against counting attacks.

3. Transferable: the ability to reply to a message is
transferable in the sense that the recipient of a mes-
sage can pass the message (and the ability to reply
to it) on to someone else without leaking any private
information other than the message itself. A conse-
quence of this is that many different people may reply
to the same message, if for example the original mes-
sage was posted to a public bulletin board.

4. Compatible: our protocol processes replies in the
same way as original messages during the mixing phase.
Replies are only handled differently from original mes-
sages in a pre-processing step prior to mixing. As a
result, messages cannot be distinguished from replies
(or replies to replies) once the mixing has begun. This
improves the privacy offered by the scheme.

1.1 Definition of Privacy
We turn now to the security properties of anonymous re-

turn channels, and start with a definition of our adversarial
model. Recall that our system consists of a number of users
who send messages to one another via a mixnet. The mixnet
itself consists of a number of mix servers that process batches
of messages sequentially.

We make the assumption common in the mixnet literature
that the adversary has the ability to eavesdrop passively on
any link in the network (between a user and a mix server,
as well as between two mix servers). The adversary may
not delete or corrupt messages in transit (in particular we
do not consider denial-of-service attacks). The adversary
may, however, statically control any number of users (who
may submit messages of their own) and up to a minority of
mix servers. Recall that giving the adversary static control
means that the adversary must choose the subset of entities
it wants to control before the protocol begins. This choice
can not later be changed during the execution of the proto-
col. The adversary’s computational resources are bounded
by a polynomial in the security parameter.

The intuitive security requirement for our protocol is that
it should protect the anonymity of all honest users against
the adversary. We now formalize this requirement. We de-
fine privacy first for original messages, then for replies.

Original messages. Recall that messages are processed
in batches. Let us consider a particular batch B. Let S
(for sender) be the set of all users who submitted at least
one message to B. We define the subset S0 ⊆ S of honest
senders (i.e. those not controlled by the adversary). Let D
be the distribution on S0 that is proportional to the number
of messages submitted by each sender in S0 to the batch B.

Definition 1.1. Privacy (original messages). We say
that our protocol preserves the privacy of honest users if the
adversary can not trace any original message in the output
of the mixnet back to a sender in S0 with accuracy greater
than by drawing from S0 at random according to distribution
D.

Observe that this definition of privacy for original mes-
sages is asymmetric with respect to senders and receivers.

The identity of a honest sender is hidden among the set S0

of all possible senders in that batch, regardless of whether
the recipient of the message is controlled by the adversary
or not. On the other hand, naturally, the anonymity of the
receiver of an original message is only protected so long as
the message was sent by a honest sender. In other words,
the privacy of a receiver is conditional on the sender not be-
ing controlled by the adversary. This shouldn’t surprise us:
we are only rephrasing the fact that Alice by necessity must
know Bob’s identity since she initiated the communication
with him.

Replies. Let us now consider what happens when “anony-
mous” messages are exchanged back and forth between Alice
and Bob. Assume that Alice initiates an exchange with Bob,
who then uses the anonymous return channel set up by Alice
to reply to her. The definition of privacy for replies is the
opposite of what it was for original messages. We can not
prevent Alice (the recipient of the reply) from learning the
identity of Bob (the sender), but we must ensure that Bob
does not learn the identity of Alice. Let us again consider
a particular batch B′. Let R (for receiver) be the set of all
users who received at least one reply from B′. We define the
subset R0 ⊆ R of honest receivers (i.e. those not controlled
by the adversary). Let D′ be the distribution on R0 that
is proportional to the number of replies received by each
receiver in R0 from the batch B′.

Definition 1.2. Privacy (replies). We say that our
protocol preserves the privacy of honest users if the adver-
sary can not trace any reply in the input of the mixnet to a
receiver with accuracy greater than by drawing from R0 at
random according to distribution D′.

The identity of honest recipients is hidden among the set
R0 of all possible receivers, regardless of whether the sender
of the reply is controlled by the adversary or not.

1.2 Traffic Analysis Attacks
We give more detail here about the threat presented by

traffic analysis attacks (or counting attacks) and explain
what makes our protocol resistant to these attacks. As-
sume that Alice has sent an anonymous message to Bob
and has given Bob the ability to reply to her. In order to
learn Alice’s identity, Bob may send a specific number of
replies in a given batch and observe who collects the corre-
sponding number of messages in the output of the mixnet.
Alternately, Bob may send replies at specific intervals, and
observe who collects messages in the output of the mixnet
in the same time periods. These are known as counting
attacks.

Counting attacks are very hard to mount against our pro-
tocol for the following reason. After establishing an anony-
mous return channel with Bob, Alice may reuse this same
return channel for her communications with Charlie, Dave,
etc. Bob may well try to send a specific number of replies in
a given batch, but since he can only observe the total num-
ber of messages collected by any player (and does not know
which among these were sent by him) he won’t be able to
determine which player picked up his replies. This assumes
naturally that Alice constantly receives messages or replies
from multiple sources, and that Bob does not collude with
every one of Alice’s correspondents! In order to counter a

counting attack that stretches over time (i.e., correlates in-
put timings to timings of delivered messages) we allow either
correspondent to alter the public key used to send the next
reply – the other party will not know when this occurs, nor
what key is replaced with what other key.

The threat of traffic analysis attacks can be further mit-
igated by techniques discussed in section 4, that allow for
example a sender to set an upper bound on the maximum
number of replies, or specify a deadline after which replies
are no longer accepted. Finally, generic techniques borrowed
from asynchronous mixnet designs, such as delaying mes-
sages or introducing dummy traffic, can help to reduce fur-
ther the threat of traffic analysis attacks. We discuss these
techniques in more detail below.

1.3 Related Work
Chaum [1] describes a technique that allows the recipient

of an anonymous message to send a single anonymous re-
ply with an “untraceable return address”. This technique is
vulnerable to traffic analysis attacks if multiple replies are
allowed to be sent using the same return address. Indeed,
the recipient of the replies risks being identified by the num-
ber of messages that he received through a particular return
address. To allow for multiple replies, the sender must pro-
vide the recipient with multiple return addresses (one per
reply), at a communication cost linear in the number of
replies expected. Type I Cypherpunk Remailers [15], Ba-
bel [7], Onion routing [6] and Mixminion [3] all use variants
of the same technique with the same essential limitation.

Type I Cypherpunk remailers and Babel however do al-
low for reuse of return addresses, but with severe limitations.
In Type I remailers, the return address is not delivered di-
rectly to the recipient of a message but instead it is hidden
behind a layer of indirection: a nymserver holds the return
address on behalf of the recipient and is trusted not to re-
veal it to anyone. The obvious limitation of this approach
is its reliance on trusted nymservers. Babel allows servers
to rewrap replies with a few extra hops, called inter-mix de-
tours. This technique ensures that replayed messages follow
different paths, thus making them harder for an adversary
to recognize. This and other asynchronous techniques can
be used to strengthen any scheme, ours included.

The unique strength of our protocol, however, comes from
the fact that our return channels are reusable. A sender can
set up a single anonymous return channel and use it with an
arbitrary number of correspondents. As already explained,
the fact that numerous correspondents use the same return
channel mitigates the risk of counting attacks. The privacy
of all senders and recipients is guaranteed as long as each
recipient receives messages from multiple sources, at least
one of which is not controlled by the adversary.

What makes it possible for our return channels to be
reused is the guarantee (based on the semantic security of
ElGamal encryption) that two recipients can not determine
whether their return channels are the same or not, and there-
fore do not know whether they are replying to the same per-
son. In contrast, reply blocks based on Chaum’s technique
can not be reused with different players for if they were these
players could simply compare their reply blocks and learn
that they are communicating with the same person.

As already noted, generic techniques borrowed from asyn-
chronous mixnet designs can help to reduce further the threat
of traffic analysis attacks. In a synchronous mix network,

all inputs are processed in batches, and elements belonging
to one batch are processed together as they pass through
the mix network. In an asynchronous mix network, on the
other hand, messages may be separated from the rest of their
batch in order to make timing based attacks more difficult.
A drawback of such an approach is the increased difficulty
of providing robustness, i.e., guarantees of correct mixing.
Our work blurs the lines between synchronous and asyn-
chronous mix networks to some extent. While our construc-
tion is decidedly synchronous in operation (and does offer
robustness), it is clear that anonymity can benefit from some
techniques normally associated with asynchronous mixing.
In particular, introducing chaff elements in the input would
help defend against traffic analysis based on the number of
deliveries to various recipients. These chaff elements could
correspond to replicated entries. One could also process all
the inputs in a batch, but only deliver some portion of the
outputs, entering the remainder into a “second loop” of the
mix network. This corresponds to the notion of pool mixes,
introduced by Cottrell [2].

Finally, in concurrent and independent work, Waters et
al.[16] propose a protocol that allows the recipient of a mes-
sage to reply multiple times to the sender by constructing
“incomparable public keys”. The adversary can not tell
whether two such public keys belong to the same sender.
A drawback of this approach is that it does not allow for di-
rect deliveries of replies. Instead, replies must be broadcast
to the set of all possible recipients, and recipients must sift
individually for replies that are addressed to them. While
this prevents any form of counting-based traffic analysis, it
is not a practical technique, especially when the volumes are
high as is desirable in any mix network.

Organization of the paper.
In the next section, we give some background on re-encryption
mixnets and describe techniques for mixing ciphertext tuples
and for switching encryption keys. In section 3, we describe
a basic mixnet with reusable anonymous return channels.
In section 4, we discuss how the sender of a message can set
various kinds of limits on the use of the return channel. We
conclude in section 5.

2. MIX NETWORKS PRELIMINARIES

We start this section with a quick overview of re-encryption
mix networks. Readers unfamiliar with re-encryption mixnets
may consult [13] for more detail.

For concreteness, we base our presentation of re-encryption
mix nets on an ElGamal implementation. ElGamal is a
probabilistic public-key cryptosystem, defined by the follow-
ing parameters: a group G of prime order q, a generator g of
G, a private key x and the corresponding public key y = gx.
Plaintexts are in G and ciphertexts in G×G. ElGamal is se-
mantically secure under the assumption that the Decisional
Diffie Hellman (DDH) problem is hard in the group G.

Mix networks exploit the fact that the ElGamal cryptosys-
tem allows for re-encryption of ciphertexts. Given an ElGa-
mal ciphertext C and the public key y under which C was
constructed, anyone can compute a new ciphertext C′ such
that C and C′ decrypt to the same plaintext. Furthermore,
without knowledge of the private key x, one cannot test if
C′ is a re-encryption of C if the DDH problem is hard in G.

Definition 2.1. Re-encryption mix networks (ElGamal
implementation)

• Key generation: all mix servers jointly generate the
parameters of an ElGamal cryptosystem. The param-
eters G, g, y are made public, while the private key x
is shared among the mix servers [14, 5].

• Batch generation: users are invited to submit to
the mixnet ElGamal encrypted inputs E(m) using the
parameters generated above. Users are also required
to submit a proof of knowledge for the corresponding
plaintext m (see [8]). We do not concern ourselves
with the policy that govern the creation of a batch, but
we assume that at some point the batch is ready for
processing. At this point, the batch is mixed and then
decrypted (see below).

• Mixing phase: Each server in turn mixes and re-
encrypts the set of messages in the batch. More pre-
cisely, mix server Mi receives as input the set of El-
Gamal ciphertexts output by mix server Mi−1. Server
Mi permutes and re-randomizes (i.e. re-encrypts) all
these ciphertexts, and outputs a new set of ciphertexts,
which is then passed to Mi+1. Server Mi must also
provide a proof of correct mixing (see e.g. [4, 12, 11]).

• Decryption phase: a quorum of mix servers jointly
perform a threshold decryption of the final output, and
provide a zero-knowledge proof of correctness for de-
cryption.

The mixnet with reusable anonymous return channels that
we define in the next section differs slightly from the stan-
dard re-encryption mixnet given above. In addition to the
fact that our new mixnet implements return channels of
course, the two main difference are as follows:

Mixing ciphertext tuples
The inputs submitted by users to the mixnet will not consist
of a single ElGamal ciphertext. Instead, we will require users
to submit vectors of ElGamal ciphertexts (pairs, triplets,
etc.) The number of ciphertexts in a vector will always
be the same for all users, but it may be greater than one.
Mix servers must re-encrypt individually every ciphertext
component of the vector, then mix the vectors. Note that
the vectors are mixed, but the order of the ciphertexts within
any given vector is fixed.

One simple way to achieve this when the input elements
are all ElGamal ciphertexts encrypted under the same pub-
lic key is to generate a checksum for each vector of input
ciphertexts. This checksum guarantees the integrity of the
vectors: specifically the checksum ensures that elements of
the same vector are not separated. The checksum is ap-
pended to the vector to form an augmented vector. We mix
all the augmented vectors using a robust mix network and
verify that the checksums in the resulting augmented output
vectors are all correct. The checksum portion of the output
vector can then be discarded.

To give a concrete example, the checksum may be com-
puted as a product of the vector elements. Consider a
vector [(a1, b1), (a2, b2), (a3, b3)] of 3 ElGamal ciphertexts.
The corresponding checksum is the ciphertext (a4, b4) =
(
∏3

i=1 ai,
∏3

i=1 bi). The mixing proceeds as follows. The

first elements of every vector are all mixed together; the sec-
ond elements of every vector are also mixed together, and
so on. The mix servers reuse the same random permutation
each time, but use random and independent re-encryption
factors. The robustness of the mixing guarantees that vector
elements have not been reordered. The checksum guarantees
that vector elements have not been separated.

The correctness of the checksums may be verified either af-
ter every round of mixing, or just once at the end after every
server has mixed the input vectors. To verify the checksums,
we compute a new checksum for each output vector and com-
pare this new checksum with the original checksum (which
has accompanied the vector through the rounds of mixing).
This comparison can be performed using a Plaintext Equiv-
alence Test [10]. If all comparisons result in equality, the
mixing is considered correct. If not, all servers involved in
the mixing must reveal their re-encryption factors to prove
they operated correctly.

A more efficient approach is to let each mix server prove
plaintext equivalence by publishing an exponent α (for each
tuple) such that if the recomputed output checksum cipher-
text is re-encrypted with that exponent, one obtains the
actual output checksum. This Plaintext Equivalence Test
relies on the re-encryption factors of the server rather than
the secret key of the mix network. It may be of particular
use if the verification is to be performed after each round of
mixing.

With either approach, the computational cost of mixing
tuples is proportional to the number of elements in the vec-
tor.

Switching encryption keys
The outputs of the mixnet after the mixing phase are El-
Gamal ciphertexts encrypted under the public key of the
mixnet. Recall that the corresponding private key is shared
among all mix servers. These ciphertexts can not be deliv-
ered as such to recipients, because recipients do not know the
private key of the mixnet and could therefore not decrypt
the messages they receive. It is not acceptable either for
the mixnet to decrypt the messages before delivering them:
doing so would enable senders to recognize messages in the
output and trace them to their recipients.

What we need is a technique that allows a quorum of mix
servers to re-encrypt output ciphertexts under the public
keys of the recipients to whom they are addressed. “Switch-
ing encryption keys” ensures that the ciphertext delivered
to a recipient is encrypted under the public key of that re-
cipient rather than under the public key of the mixnet. A
correct, private, robust, and publicly verifiable method for
switching encryption keys is described in [9]. We refer the
interested reader to that paper for the details of the proto-
col.

3. REUSABLE ANONYMOUS RETURN
CHANNELS

For simplicity, we base our initial presentation of reusable
anonymous return channels on the following scenario. Alice
sends an anonymous message M to Bob and wants to allow
Bob to send her one or several anonymous replies N1, N2, . . .
without revealing her identity. We show later that the same
protocol also allows Bob to transfer to someone else the abil-
ity to reply to Alice.

All messages between Alice and Bob pass through a mix
network to ensure privacy. Our protocol processes messages
and replies in (almost) exactly the same way. For clarity
however, we will describe first how Alice sends her original
message M to Bob. Next we describe how Bob can reply
anonymously to Alice.

Setting up the mixnet
The mix servers jointly generate the public and private pa-
rameters of an ElGamal cryptosystem. The public encryp-
tion parameters (the group G, the generator g and the pub-
lic key y) are published, while the private key x is shared
among the mix servers in a threshold manner [14, 5]. Let
EM and DM denote the encryption and decryption func-
tions for the ElGamal cryptosystem set up by the mixnet.
The mix servers also establish a shared signing key. Let
SM and VM denote the corresponding signing and verifica-
tion algorithms. Note that there are robust algorithms for
distributed decryption and signing, such that a minority of
cheating servers can not produce an incorrect decryption or
signature.

Submission of messages
The mixnet collects a batch of messages submitted by users
over a certain time period. We describe here how Alice sub-
mits one message M to the mixnet. Naturally, Alice may
submit several messages, and the mixnet also accepts mes-
sages (or replies, as described below) from other users.
We assume that Alice wants to send anonymously a message
M to Bob. Let TA be the identifying tag associated with
Alice (her email or IP address for example), and let PKA be
Alice’s public key. Note that Alice may use a different iden-
tifying tag or a different public key for different messages,
but she need not do so. In fact, as discussed below, Alice’s
privacy is enhanced by the use of long lived tags and public
keys.
Let PKB denote Bob’s public key, and TB the identifying
tag associated with Bob. Alice submits to the mix network
the triplet

(
EM(TA||PKA); EM(M); EM(TB ||PKB)

)

and proves knowledge of (TA||PKA) and (TB ||PKB) to the
mixnet1. If both proofs of knowledge are correct, the mes-
sage is accepted.

Mixing the batch
When a batch is “ready” (e.g. when it contains enough mes-
sage), the messages in the batch are mixed in turn by each
mix server. Recall that each message in the batch consists
of a triplet of ciphertexts. Each mix server in turn mixes
and re-encrypts the triplets in the batch, in such a way that
the respective ordering of elements within each triplet is pre-
served (see Section 2).

1Proofs of knowledge are important for two reasons. First,
they prevent users from resubmitting ciphertexts. Second,
they prevent users from using the mixnet as a decryption
oracle for ciphertexts encrypted under the public key of the
mixnet. In these proofs of knowledge, the verifier (i.e. the
mixnet) should issue challenges to the user that depend on
the value EM(M) to avoid splicing attacks. See [8] for more
details.

Delivery of messages
The mixnet outputs a list of triplets

(
EM(TSi ||PKSi); EM(Mi); EM(TRi ||PKRi)

)
,

where Si is the sender of message Mi to recipient Ri for all
i = 1, . . . , k (k is the number of messages in the batch). Each
triplet in the batch is processed and delivered as follows.
The mix servers jointly generate a signature Sigi on the
value EM(TSi ||PKSi). The mix servers jointly decrypt the
last element of the triplet to produce (TRi ||PKRi). The mix
servers then jointly convert EM(Mi) into EPKRi

(Mi) (see

Section 2 for more detail on “switching” encryption keys).
The message EPKRi

(Mi) together with EM(TSi ||PKSi) and

the signature Sigi are delivered to the recipient (as identi-
fied by the tag TRi). The recipient can decrypt that message
to recover the plaintext Mi. The recipient keeps the value
EM(TSi ||PKSi) and the signature Sigi. These will be nec-
essary to reply to Mi (see below)

Submitting a reply
We assume that Bob has received the message M , along
with the value EM(TA||PKA) and the signature Sig of the
mixnet on that value. The submission of a reply message to
the mixnet is nearly identical to the submission of an original
message. Let N denote the content of Bob’s reply. Bob must
in turn supply a public key (encrypted under EM) which
Alice may use should she want to reply to Bob’s reply. This
public key may be (but need not be) the public key PKB

of Bob that Alice used to send her original message. Bob
may also use a different key. Either way, let PKB denote
the public key Bob uses for his reply N . Bob submits to the
mixnet the triplet

(
EM(TB ||PKB); EM(N); EM(TA||PKA); Sig

)

and proves knowledge of (TB ||PKB) only. The message is
accepted if that proof of knowledge is correct and the sig-
nature Sig on the tag EM(TA||PKA) is correct. From that
point on, replies are mixed and delivered in exactly the same
way as original messages.

A note on the use of signatures to guarantee the au-
thenticity of tags:
The mixnet signature Sig on the tags EM(TA||PKA) en-
sures that the users do not tamper with tags. Since tags are
eventually decrypted by the mixnet (in the delivery phase),
this precaution is crucially important to prevent users from
using the mixnet as a decryption oracle on any ciphertext
of their choice encrypted under the mixnet’s public key.

Observe that for the purpose of guaranteeing the integrity
of tags, a message authentication code (MAC) would do just
as well as a signature. MACs may be computed more effi-
ciently than signatures, but there is a caveat. While a signa-
ture can be generated and verified jointly by any quorum of
mix servers (each of whom holds a share of the private key),
the same is not possible with a MAC. If the authenticity of
the tag EM(TA||PKA) is to be guaranteed by a MAC, each
server will have to apply its MAC to the tag. Later, each
server can individually verify its own MAC on the input
tag submitted by a user. A server cannot verify any other
server’s MAC. The drawback of this solution then is that it
requires as many MACs as there are mix servers (versus a

single signature) and also requires a large overlap between
the servers that generate and verify the MACs (which im-
plies that the reply must be processed by the same servers
that processed the original message).

Properties:

• Composable. Our protocol allows straightforwardly
for replies to replies, as well as replies to replies to
replies, etc.

• Reusable. Bob can reuse the value EM(TA||PKA)
and the corresponding signature Sig to send as many
replies as desired. All replies sent by Bob are anony-
mous. Alice may also reuse the same reply tag in com-
munication with other parties.

• Transferable. Bob may pass on the tag EM(TA||PKA)
and the accompanying signature Sig to enable any
other user to reply to Alice. For that matter, Bob
need not be an individual user but could also be a
public bulletin board (in which case encryption using
the public key of the receiver PKB may be the identity
function, effectively making the output message pub-
licly readable after the switching of encryption keys).

• Compatible. The mix network processes replies and
original messages in almost exactly the same way. The
only difference is that at submission time, an original
message requires two proofs of knowledge whereas a re-
ply requires one proof of knowledge and one signature
verification. This admittedly allows an adversary to
distinguish replies from original messages, but only at
the time of input. During the mixing phase, one can-
not tell an original message from a reply. The ability to
mix original messages and replies together in the same
batch not only enhances privacy, but also simplifies the
design of the anonymous communication system.

• Efficiency. Our mixnet has four times the compu-
tational and communication cost of a standard plain-
vanilla mixnet.

• Threat. As discussed in the introduction, our pro-
tocol for return channels may be vulnerable to traffic
analysis attacks. These attacks work best when the
volume of replies is very low. If we assume a high vol-
ume of replies, the threat presented by these attacks
is minimal. These attacks can be further mitigated by
the techniques discussed in the next section.

4. BOUNDING REPLIES
It may sometimes be desirable to place bounds on the

use of return channels, both as a privacy control technique
(as discussed above) and out of practical considerations. For
example, a seller who advertises an item may be interested in
no more than a particular number of replies, or may not want
to receive replies past a certain deadline. In this section,
we propose return channels that can be used only before a
certain date, or only a specific number of times, and are then
rejected if input to the mix network.

Throughout, we use the notation FM for the filtering infor-
mation submitted by the sender of a message M . The filter-
ing information FM may specify the maximum total number
of replies to the message, or the deadline past which replies

are disallowed, or the maximum number of replies allowed
per time period, or any combination of these policies. Ob-
serve however that while all these policies are possible, some
are entirely stateless (e.g. a deadline past which replies are
disallowed), while others require the mixnet to keep track of
a potentially very large amount of information (e.g. bound-
ing the number of replies).

We introduce two techniques for bounding replies. The
first provides the convenience described above but does not
help defend against traffic analysis attacks. The second tech-
nique helps defend against traffic analysis attack. We call
Alice the sender of the message and Bob its recipient, but
note that our techniques for bounding replies work equally
well for original messages and replies.

4.1 Output Filtering
The sender of a message M (Alice) may include the fil-

tering policy FM associated with that message in the first
element EM(TA||PKA) of the triplet. Thus Alice submits
to the mixnet a triplet formatted as:

(
EM(TA||PKA||FM); EM(M); EM(TB ||PKB)

)

Bob’s reply to that message will be of the form:
(

EM(TB ||PKB ||FN); EM(N); EM(TA||PKA||FM); Sig

)

where the value FN is optional (Bob need not specify a fil-
tering policy for his reply to Alice).

The mix network mixes and re-encrypts all triplets as
in the original protocol. As in the original protocol, the
mixnet decrypts the last element of the triplet to produce
(TA||PKA||FM). Here, the mixnet verifies that Bob’s re-
ply to M is allowed by the filtering policy FM . If not, the
mixnet drops the triplet. If the reply is allowed, the mixnet
proceeds as before. It converts EM(N) into EPKA(N) and
sends to Alice EPKA(N) along with EM(TB ||PKB ||FN) and
a signature Sig on that value.

Properties:
Note that output filtering limits replies forwarded to re-
ceivers but it does not help defend against traffic analysis
attacks. Indeed, the filtering policy is decrypted together
with the recipient of the message. The filtering policy is
thus ineffective against an adversary who controls at least
one mix server: a message that is disallowed by the filtering
policy can not be discarded before the adversary has learned
its intended recipient.

4.2 Input Filtering
In this approach, the mixnet verifies that a message is

allowed by the appropriate filtering policy at the time the
message is submitted. The message is only mixed and de-
livered if the filtering policy allows it. Other messages are
discarded even before being mixed. We now describe the
technique in more detail.

The filtering policy FM is encrypted under the public key
of the mixnet and submitted together with the rest of the
message. Thus messages are formatted as quadruplets in-
stead of triplets:
(

EM(TA||PKA); EM(M); EM(TB ||PKB); EM(FM)

)

Assume for now that there is no filtering policy defined for
the recipient indicated by the tag EM(TB ||PKB) and that
the message is accepted. The mix servers mix and re-encrypt
these quadruplets as in the original protocol. The only dif-
ference is that the mix network outputs a signature on the
value

EM(TA||PKA); EM(FM)

The mixnet sends to Bob the message EPKB (M), as well as
the values EM(TA||PKA) and EM(FM) and the signature
Sig. The mixnet may optionally decrypt EM(FM) and send
the plaintext FM to Bob, so that the recipient is aware of
the filtering policy associated with M .

Bob may reply to this message with the sextuplet
(

EM(TB ||PKB); EM(N); EM(TA||PKA);

EM(FN); EM(FM); Sig

)

When this sextuplet is input, the mixnet verifies the signa-
ture Sig on the value

EM(TA||PKA); EM(FM)

Bob’s reply is discarded if the signature is incorrect. If
the signature is correct, the mixnet decrypts EM(FM) and
checks whether Bob’s reply is allowed by the policy FM . If
not, Bob’s reply is discarded. If it is allowed, the mixnet
strips the sextuplet input by Bob of EM(FM) and of Sig.
The resulting quadruplet is processed as described above.

Properties:
Input filtering helps defend against traffic analysis attacks.
Messages that are not allowed by the filtering policy are
discarded and the adversary can not learn the recipient for
whom they were intended. On the downside, input filtering
comes at a higher computational cost since it requires mix
servers to process quadruplets rather than triplets.

5. CONCLUSION
We propose the first protocol that allows for reusable

anonymous return channels. Our protocol makes possible
flexible complete anonymous conversations. The main ad-
vantages of our protocol are as follows. The same return
channel can be reused to allow any number of recipients to
reply to a sender. These recipients can not test whether
or not they are replying to the same person. The protocol
allows for replies, as well as replies to replies, etc. The pro-
tocol processes replies and original messages in almost the
same way and the ability to reply to a message is transfer-
able. Our protocol has four times the computational cost
of a basic re-encryption mixnet. In practice, this translates
into acceptable performance.

The ability to reply multiple times to an anonymous mes-
sage introduces potential new threats to privacy. The re-
ceiver of an anonymous message may try to learn the iden-
tity of the sender by sending numerous replies and observing
who collects these replies. We describe techniques to miti-
gate this risk by allowing senders to specify limits on how
many replies they are willing to accept.

6. ACKNOWLEDGMENTS
The authors would like to thank Roger Dingledine for his

help in identifying related work, as well as the anonymous
referees for their helpful comments.

7. REFERENCES
[1] D. Chaum. Untraceable electronic mail, return

addresses, and digital pseudonyms. In Communications
of the ACM, 24(2):84-88, 1981.

[2] L. Cottrell. Mixmaster & remailer attacks.
http://www.obscura.com/~loki/remailer/

remailer-essay.html, 1995.

[3] G. Danezis, R. Dingledine and N. Mathewson.
Mixminion: design of type III anonymous remailer
protocol. In Proc. of the 2003 IEEE Symposium on
Security and Privacy, pp. 2-15.

[4] J. Furukawa and K. Sako. An efficient scheme for
proving a shuffle. In Proc. of Crypto ’01, pp. 368-387.
Springer-Verlag, 2001. LNCS 2139.

[5] R. Gennaro, S. Jarecki, H. Krawczyk and T. Rabin.
Secure Distributed Key Generation for Discrete-Log
Based Cryptosystems. In Proc. of Eurocrypt ’99,
pp. 295-310. Springer-Verlag, 1999. LNCS 1592.

[6] D. Goldschlag, M. Reed and P. Syverson. Onion
routing for anonymous and private internet
connections. In Communications of the ACM,
42(2):39-41, 1999.

[7] C. Gulcu and G. Tsudik. Mixing E-mail with Babel. In
Proc. of Network and Distributed Security Symposium
- NDSS ’96. IEEE, 1996.

[8] M. Jakobsson. A practical mix. In Proc. of Eurocrypt
’98, pp. 448-461. Springer-Verlag, 1998. LNCS 1403.

[9] M. Jakobsson. On quorum controlled asymmetric
proxy re-encryption. In Proc. of Public Key
Cryptography ’99.

[10] M. Jakobsson and A. Juels. Mix and match: secure
function evaluation via ciphertexts. In Proc. of
Asiacrypt ’00, pp. 162-177. Springer-Verlag, 2000.
LNCS 1967.

[11] M. Jakobsson, A. Juels and R. Rivest. Making mix
nets robust for electronic voting by randomized partial
checking. In Proc. of USENIX ’02, pp. 339-353, 2002.

[12] A. Neff. A verifiable secret shuffle and its application
to E-Voting. In Proc. of ACM CCS’01, pp. 116-125.
ACM Press, 2001.

[13] W. Ogata, K. Kurosawa, K. Sako and K. Takatani.
Fault tolerant anonymous channel. In Proc. of ICICS
’97, pp. 440-444, 1997. LNCS 1334.

[14] T. Pedersen. A Threshold cryptosystem without a
trusted party. In Proc. of Eurocrypt’91, pp. 522-526,
1991.

[15] S. Parekh. Prospects for remailers. First Monday,
1(2), August 1996. On the web at http:

//www.firstmonday.dk/issues/issue2/remailers/

[16] B. Waters, E. Felten and A. Sahai. Receiver
anonymity via incomparable public keys. To be
presented at the 2003 ACM Conference on Computer
and Communications Security.

