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ABSTRACT OF THE DISSERTATION
Privacy vs. Authenticity
by

Bjoérn Markus Jakobsson
Doctor of Philosophy in Computer Science
University of California, San Diego, 1997
Associate Professor Russell G. Impagliazzo, Chair

In many cryptographic settings, there is a trade-off between privacy and authenticity. We
analyze this trade-off in the context of electronic commerce: On one hand, we have schemes
whose perfect and un-revokable privacy makes them susceptible to attacks such as blackmail
and money-laundry. On the other hand, we have schemes where the authenticity of the funds
(in the sense of ownership) is guaranteed by sacrificing user privacy in its entirety. In this
work, we propose a model and protocols balancing the needs for privacy against those of
authenticity.

In our proposed e-money system, all users enjoy full privacy, but both value of
funds and user anonymity can be revoked or suspended unconditionally, by the cooperation
of a quorum of banks and consumer rights organizations. Our method employs diffusion of a
task into distributed modules; doing so, it enables a stronger and more realistic adversarial
setting, and achieves increased security, privacy, availability and functionality without in-
troducing any noticeable disadvantage. The result is a scheme that protects against privacy
aided attacks, such as blackmail and money-laundry, as well as the “ultimate crime,” where
an active attacker gets the bank’s secret key or forces the bank to give “unmarked bank
notes”. Our system, unlike all previous anonymous systems, can prevent all such crimes
from successfully being perpetrated, and employs revocation to do so.

One important building block implements the desired balance between privacy and
authenticity for digital signatures. We introduce magic ink signatures; such signatures re-
quire a quorum of servers to be produced, and a (possibly different) quorum to be unblinded.
We present and use an efficient and robust scheme for magic ink DSS signatures.

The mechanisms introduced to balance the need for anonymity against the need
to be able to revoke it, together with the notion of challenge semantics that we introduce,
provide us with a very versatile system, a second important goal of our investigation. The
proposed scheme is efficient and allows for numerous modes of payments.

viii



Chapter I

Introduction

I.A The Need for Balanced E-Money Systems

It is provisioned that in the near future, electronic money systems will be part of
the economy, exploiting advances and accessibility of networking technologies to homes, of-
fices, and other locations. Electronic money, associated with cryptographic security against
forgery and user anonymity with respect to payments, allows a practical and flexible so-
lution to the problem of how to administer the transfer of funds. This flexible tool can
enhance the prevalence and capability of fund transfers while simultaneously increasing its
users’ privacy.

Originally, perfect anonymity of users of e-money was advocated very strongly,
granting privacy to users with respect to their purchase patterns. However, as recently
noted, it may be a tool that can easily be abused by criminals lest extreme caution is
taken when designing the system. The availability of such a strong, flexible access-control
capability as anonymous money may become dangerous (serving as a double-edged sword):
Perfect anonymity enables “perfect” crimes like blackmailing [76], money laundry and bank
robberies [49]. The reason why we label these crimes perfect is that in a setting with perfect
anonymity, the skilled perpetrator would be provably untraceable. Thus, we argue that a
solution that obtains perfect privacy in the cryptographic sense is far from perfect in the
social or economical sense. In fact, the danger of anonymous e-money may prevent its
legality ([34, 83]). We therefore argue that the anonymity must be revokable in cases where
it is authorized by court due to immense suspicion of a violation of the law, or due to legal
information inquiries, regulatory acts, coin losses, etc.

However, it is unsatisfactory if a coin or its anonymity only can be revoked by its
owner (where he gives the bank the blinding factors used when the coin was withdrawn,
so that the bank can blacklist the coin). Whereas this is a possibility if the user loses his
smart card with the coins on, and has a backup, it is not possible if the user has been
the victim of a blackmail attack in which he has never learnt the blinding factors. This
could happen if the attacker forced the victim to use blinding factors set by the attacker
in the withdrawal protocol of the coin from the victim’s account. Furthermore, it may be
that the user whose coin needs to be traced is not willing to cooperate with the bank, e.g.,
if he obtained the coin through a bank robbery. Still yet, anonymity can be abused for
money laundering and the sale of illegal goods. Here, it has been argued that a criminal
would not dare to use e-money for illicit transactions, since it could be proven that he



received the corresponding payments. We dispute this opinion: Since the criminal can
easily ascertain that he cannot be tied to the delivery (into a back room operating shop),
and since he can claim that the payment was for other merchandise (using a front room
operating shop) the ability to prove that a certain payment was made will not provide
any evidence of the alleged offense. Therefore, the revokational ability must reside in an
entity that will not cooperate in the illegal conduct we are trying to discourage. However,
giving the revocation power to a single entity (such as the bank) enables abuse against
individuals, thereby bringing us back to square one. Electronic money systems represent
a model of highly sensitive systems where trust and protection are much needed, and for
which it is vital to win consumer confidence and support. We believe that this support has
to be gained by not forcing users to put a lot of trust in individual entities for the security
of their funds and integrity, and by supplying the user with a practical product. We do
so by distributing the power for removing the privacy so that entities with different goals
(e.g., commercial entities, law enforcement, and consumer representative organizations) are
required to cooperate in order to revoke anonymity. In order to increase availability and
maintain security against a small subset of malicious revokational entities, we want to allow
any valid quorum of revokation entities to be able to perform their task, even if they were
not involved in preceding operations.

I.A.1 Outline

In this thesis, which covers material mainly from [49, 50, 51], an electronic money
system with revokable anonymity is presented, first on a high level, outlining the main
protocols and their properties; then, we suggest one possible implementation of an important
building block, a magic ink signature scheme for DSS signatures.

We start by explaining what our electronic money system achieves, what attacks
we consider, and, in general terms, the structure of our solution and our proposed building
blocks. We then put our work in the context of related work (section I.B). The main
body of the paper contains two (somewhat independent) parts: First, the electronic money
scheme is presented on a high level, using magic ink signatures as a building block. Then,
we introduce this signature type and present a DSS based implementation.

An Electronic Money Scheme: We begin by presenting the system model in section I1.A.
Here, the setting is explained, the different participants introduced, and system events
outlined. Then, in section II.B, we define the different attacks we consider, and state the
requirements our solution satisfies. We define concepts in section I1.C, and introduce our
system in section II.E. Here, we use magic ink signatures as a building block. In section II.F,
we discuss how the scheme is made more versatile using challenge semantics. This allows
us to add functionality such as divisibility, checks, credit purchases, micro payments and
a fair exchange without any noticeable increase of complexity. In section II.G, we discuss
the efficiency of the scheme, and in II.H, we introduce a method for database reduction to
minimize the amount of data to be stored by the Bank. Finally, we outline security aspects
of the system in section IV.B.

Magic Ink DSS Signatures: In sections II1.A— III.D, we specify the requirements on the
signature generation and tracing protocols, review DSS signatures, and describe the model.
Then, in section IIL.LE, we communicate the intuition of our magic ink scheme, using a
simplified version, followed by a description of our assumptions in section III.F. We explain



what tools we will use in section III.G, and then introduce the Magic Ink DSS signature
generation and tracing protocols in section III.H- III.I. Security claims and proofs are
presented in section IV.A.

Novel methods: The work constituting this thesis introduces:

o A stronger attack model than other schemes with revokable anonymity, and methods
to ensure security in this attack model.

e The notion of dual verification signatures, signatures with two different modes of veri-
fication, where one can be off-line and the other require interaction with an authority.

e The notion of challenge semantics, used to increase the functionality of the payment
scheme.

e The notion of coins with no pre-set number of allowed spendings, but instead with a
limited allowed wvalue of spendings.

e The use of threshold cryptography to control when actions can be performed.

o A flexible tool for generation of blind signatures, and selective unblinding of these, in
a distributed setting where participants do not trust each other.

e Two new ways of implementing robustness: (1) using a verification protocol for un-
deniable signatures, and (2) destructive robustness, in which protocol properties may
be cancelled for failed transcripts in order to achieve greater simplicity and efficiency.

I.A.2 What we achieve

Our first objective is to implement payer anonymity, and to aid law-enforcement
by allowing revocation of anonymity and value of funds, allowing traceability and blacklist-
ing as part of an off-line e-money system (once anonymity is broken, further measures can
be taken in accordance with the law). We want the revocational power to be distributed,
allowing any valid quorum to revoke anonymity (or value) selectively. This should hold
even if the same entities were not involved in previous transactions (i.e., withdrawals), and
even if some of the participants of these previous transactions are corrupt. In other words,
we want to implement robustness in the context of several interacting protocols between
replaceable participants. The system achieves unforgeability of funds, anonymity for the
honest user, and legal traceability of funds. Furthermore, the system achieves revocability
of funds, refundability (in case of incorrect action by the Bank, the Judge can enforce a
refund), and framing-freeness (i.e., that a user cannot falsely be accused of performing an
attack).

Our second objective is to achieve high versatility and efficiency, meeting flex-
ibility and convertibility requirements put forth in [61]. Our system is easily extendible
to include practical functions like coin divisibility (the ability to spend any fraction of a
coin and save the rest for later payments,) check payments, credit card payments, micro-
payments (e.g., [42, 52, 53, 71, 80]), and a fair exchange [46] (ensuring that neither the
payer nor the payee cheats each other). Similarly, we can allow certain coins to be eligible
for deposit only after certain triggering events have occurred (e.g., implementing surety
bonds [54].) These expansions in terms of functionality are obtained by employing the



means used for revocation and by introducing the use of challenge semantics, i.e., an ex-
tension of functionality achieved by the use of special forms of challenges, used to signal
behavior /function.

Our third objective is robustness against spurious faults (overspending robust-
ness). In contrast, systems like [9, 10, 12, 13, 84] have a weakness in that if there is a fault
in a user module, allowing a coin to be overspent, then the transcripts of the spent coin
allow anybody who sees them to further overspend the coin, without limitations (and in a
way that makes it appear as if it was the withdrawer who performed the overspendings.)
Apart from making the liability of the user disproportionately large, it may also be very
dangerous in the context of national (economic) security. Therefore, we will require our
system to implement overspending robustness, i.e., if a coin is overspent, no information
enabling further overspending is leaked. Thus, in our system the user will only be liable for
the overspendings he or she actually performed.

I.A.3 Avoiding abuse

By striking an appropriate balance between the rights of the users and those of
commercial and legal entities, we aim to limit the threat of the following types of attacks:

e User abuse:

— Forgery: This is the generation of valid funds representations by an entity other
than the Bank.

— Overspending: This is when a user by repeated spending spends a properly
withdrawn coin for a higher value than it has.

— Money laundry: Money laundry is when one or several participants hides
income of questionable nature by making it appear that the income was generated
by another business venture. Whereas this problem is of a more social than
technical nature, we need to be able to trace payments in order to secure evidence
for prosecution in cases where a crime is believed to have taken place.

— Blackmail: Blackmail is when an attacker forces a user to withdraw money for
him, in a way that only the attacker has a representation of the funds. Today’s
system of physical representation of value does not prevent this type of crime,
but stepping over to perfectly private electronic money would in fact aid such
criminal abuse. Allowing selected funds to be traced restricts the criminal to
today’s methods.

— Bank robbery: We consider two types of bank robbery attacks. In the first, an
issuer (comprising banks and other entities holding secret keys used for generation
or tracing of funds) may be coerced by an attacker to reveal its secret key (e.g.,
internal fraud). In the second, which is possible if withdrawals can be blinded,
an attacker may try to coerce the issuer to get e-money by forcing the issuer
to engage in a blinded, (perhaps non-standard) protocol for withdrawal. We
call this forced blinding blindfolding, and the two attacks bank robberies. If the
authenticity of a coin is solely based on the signature function of the issuer, then
it is not practically possible for the signers to trace these types of illegally issued
coins, leaving the offender totally untraceable. This, of course, can be a major



problem, particularly in light of international terrorism and adversarial foreign
governments.

e Bank abuse:

— Malicious tracing: The Bank, being a commercial entity, may wish to sell
usage statistics to advertising agencies and other companies with specific interest
in user behavior. We aim to limit this type of abuse by the introduction of the
Ombudsman!, who must be involved in each tracing. The Ombudsman cannot
be tricked to perform a tracing he does not agree to (or is forced to by a judge.)

— Framing: For legal reasons (to make evidence useful in court) it must be im-
possible for the Bank (and the Ombudsman) to frame a user, making it appear
that he or she engaged in a particular transaction, whereas this in fact is not the
case.

— Embezzlement: This is an attack in which a user loses funds due to cancellation
of the same.

¢ Ombudsman abuse:

— Malicious tracing: It must not be possible for the Ombudsman to obtain any
data about user payment behavior, even when cooperating with the Bank in
order to allow the Bank to trace.

— Framing: (as described in “Bank abuse” above.)
— Forgery: (as described in “User abuse” above.)

— Criminal Cooperation: The Ombudsman may be interested in cooperating
with an attacker for a trace not to be possible, or to reveal incorrect results.

— Embezzlement: (as described in “Bank abuse” above.)

I.LA.4 Method

At the heart of our method are a number of techniques and notions: first is the
distribution of the Bank and the Ombudsman. Secondly, we design the system to allow
for the use of proactive sharing of the Bank/Ombudsman signature function, protecting
the system against a strong infiltrating attacker. Then, we reorganize the memory, mak-
ing one entity (the Bank) keep storage for another entity (the Ombudsman) in a secure
repository. This reorganization and diffusion of function is a strengthening mechanism that
protects against insider attacks (which is the most prevalent attack on financial institutes
and systems,) and also makes the distribution of the (virtually) storage-free entity — the
Ombudsman — inexpensive to perform.

To cope with bank robbery attacks (which is the strongest suggested attack on
a monetary system) as well as the other attacks, without abandoning user anonymity, we
use dual verification signatures [49], i.e., signatures such that their verifications under some
circumstances need an “authenticator”, e.g., the Bank or the Ombudsman. We will need
two primitives:

'Ombudsman (pl. ombudsmin): word of Scandinavian origin for a government official appointed to
represent individuals against abuses and capricious acts of public officials.



1. A signature scheme that is not blindfoldable by the signature receiver. In
order to prevent a bank robbery, we need a signature scheme that cannot be blinded.
A publicly verifiable signature scheme cannot be used, since it can always be blinded
(in principle, if not efficiently, using Yao’s secure computation protocol where the
Bank secretly employs its signing key and the attacker gets the resulting value on
his secret input [86]). We will employ a three-party protocol for payments where the
Ombudsman gets involved in the signing.

2. A mechanism for anonymity. In order not to sacrifice user anonymity, we need
a method to blind the above signatures to the Bank and Ombudsman by the Bank
and Ombudsman. These entities will cooperate in producing the above signature in
a way that prevents either of them from associating coins with identities without the
cooperation of the other.

The above two primitives are implemented by a tagging of each coin, where the
coin corresponds to a signature by the Bank and the Ombudsman. These tags are stored
together with withdrawer information, such as identity, but cannot be correlated to a coin
unless a quorum of Bank and Ombudsman servers cooperate in a tracing protocol. A coin is
valid if its signature is valid (which is publicly verifiable, and is the normal-case condition)
and, (in special cases, such as after a bank robbery) if the Bank/Ombudsman database
contains a tag corresponding to the coin. Thus, the tagging and tracing functions further
use cryptographic tools that are applicable under the suggested distributed control. In order
to limit the trust assumption to a minimum, we need a quorum blind signature generation
scheme, and a quorum unblinding scheme, where it is always possible for an arbitrary
Bank/Ombudsman quorum to perform its task. To solve this problem, we introduce what
we call magic ink signatures [50].

I.A.5 Tools for Privacy and Authenticity

Generally, when an authority signs “access tokens”, “electronic coins”, “creden-
tials” or “passports”, it makes sense to assume that whereas the users can typically enjoy the
disassociation of the blindly signed token and the token itself (i.e., anonymity and privacy),
there may be cases which require “unblinding” of a signature by the signing authority itself
(to establish what is known as “audit trail” and to “revoke anonymity” in case of criminal
activity).

The physical analog of “blind signatures” of Chaum is a document and a carbon
paper put into an envelope, allowing the signer to transfer his signature onto the document
by signing on the envelope, and without opening this. Only the receiver can present the
signed document and the signer cannot “unblind” its signature and get hold of the document
signed.

This leads us to consider a new type of signature with the following physical
parallel: The signer places a piece of paper and a carbon paper in an envelope as before
(but the document on the paper is not yet written). A second piece of paper is placed on
top of the envelope. The receiver then writes the document on this second piece of paper
using magic ink, i.e., ink that is only visible after being “developed”. Due to the carbon
paper, this results in the document being written in visible ink on the internal paper. Then,
the signer signs the envelope on the second piece of paper, also using magic ink. Again, the



writing is being copied to the internal document. The receiver gets the envelope containing
the signed message (the internal paper) and the signer retains the second piece of paper
with the message and signature written in magic ink. Note that the signing is not blinded
forever to the signer: Should the signer need to unblind the document, then he can develop
the magic ink and get the document copy. We call this new type of signature a magic ink
stgnature. We present an efficient method for distributively generating magic ink signatures,
requiring a quorum of servers to produce a signature and a (possibly different) quorum to
unblind a signature. What the distribution enables us is to implement the unblinding with
separation in time — i.e., allowing the development of the magic ink at some point, but not
earlier. This is impossible in the centralized case (what can be done late can be performed
earlier if there is no limiting factor such as the quorum control in a distributed case).

Note that requiring various actions of a quorum of distributed agents regarding
a specific signature value needs a careful flexible design. For example, we cannot require
that in each action the same identical quorum of agents be present. This may otherwise,
paradoxically, reduce the availability of the service as the distribution level grows (whereas
one of the initial reasons in distributing the service was increased availability). For the same
reason, and quite counter-intuitively, it may also force us to put more trust in individual
servers with a higher degree of distribution, unless care is taken.

The scheme is robust, and the unblinding is guaranteed to work even if up to a
threshold of signers refuse to cooperate, or actively cheats during either the signing or the
unblinding protocol.

I.A.6 Tools for Robustness

We introduce two new methods of obtaining robustness:

¢ Undeniable Signature Based Robustness [50]
We employ a verification protocol for undeniable signatures [15, 16] for the protocol
participants to prove to each other that they performed the correct computation.

e Destructive Robustness [50]
We introduce destructive robustness for increased efficiency. This is a method com-
prising two protocols: In a first protocol, some entity or entities can detect incorrect
results, but cannot pinpoint who cheated. In a second protocol, the cheater is pin-
pointed, while protocol properties (such as privacy) may be destroyed for the related
session.

I.B Related Work

Since the introduction of anonymous payment schemes by Chaum [17], and prac-
tical such schemes by Chaum, Fiat and Naor [18], a large variety of electronic cash schemes
offering user privacy has been designed, e.g., [9, 22, 29, 32, 63, 64, 62]. Recently, though,
it has been noticed that perfect privacy in the cryptographic sense is seldom perfect in an
economical or social sense. The reason is that the privacy may be abused if it cannot be
controlled; one example of this was early pointed out by von Solms and Naccache [76], who
showed that schemes with user anonymity are susceptible to blackmailing attacks. Later, it
was also noticed that money laundry would be facilitated by anonymity. The existence of



such attacks may endanger government support of suggested schemes and make it a risky
commercial venture as well; thus, the recent trend has been towards schemes with revokable
anonymity.

Whereas privacy in the e-money schemes with perfect privacy typically was imple-
mented using some form of blind signatures (introduced by Chaum [17]), restricted versions
employing a third party are used to obtain revokable privacy. In [12], Brickell, Gemmell
and Kravitz developed a trustee-based electronic cash scheme that can be used to prevent
some anonymity-aided attacks. In their model, there is a Bank and a trustee. The trustee
can, given a spent coin calculate the identity of the withdrawer. This holds for all correctly
withdrawn coins (thereby excluding coins obtained through a bank robbery.) Camenisch,
Piveteau and Stadler [14, 78, 79] independently introduced “fair blind signatures,” with a
second tracing option added, from a given withdrawal transcript to a description of the
corresponding coin. In such a signature scheme (similar to what was used in [12]), the
signature receiver puts a pseudonym into the signature, allowing a judge later to unblind
the signature by calculating a pseudonym from a signature or vice versa. This two-party
relative of magic ink signature schemes is readily applicable to electronic money schemes,
obtaining a scheme similar to that presented in [12]. Cut-and-choose based solutions en-
abling the trustee to be involved only in tracings were introduced in [12, 79], and further
work in this area gave rise to efficient schemes (avoiding cut-and-choose based methods)
where the trustee does not need to be engaged in the withdrawal protocol. This was done
independently by Camenisch, Maurer and Stadler [13] and by Davida, Frankel, Tsiounis and
Yung in [31, 23, 82], the latter using so called indirect discourse proofs, in which the with-
drawer proves to the Bank that the trustee will be able to perform the trace if needed. In
the work by M’Raihi [58], a smart-card adapted scheme based on an approach reminiscent
to the fair blind signatures, but with slightly stronger trust assumptions, was suggested.
Another related solution has recently been proposed by Petersen and Poupard [67].

Functionally, these schemes have many similarities to the one we propose, although
we strengthen the protection against attacks, increase the degree of generality and the level
of distribution, and allow for customization of the resulting scheme, giving us a strong, flex-
ible and efficient e-money scheme. Using challenge semantics, we lower the storage costs of
users, and increase coin functionality compared to other proposed schemes. We also intro-
duce a method for reduction of the bank database, allowing the amount of data stored to be
drastically reduced. We note that both the challenge semantics and the database reduction
methods are made possible by the general architectural framework we introduce. Also, our
implementation allows mutually distrusting parties to perform the wanted calculation in
a robust manner, whereas some of the previously proposed protocols instead assume that
some entities and servers of the same entity trust each other.

We also strengthen the protection against weaknesses due to failures. In schemes
like [9, 10, 12, 13, 84], the secret key needed to perform a payment is leaked in its entirety if
the corresponding coin is overspent (which may occur due to hardware failures of the user
device.) This allows participants other than the withdrawer of a coin to further overspend
the coin; these are payments that the withdrawer of the coin will be responsible for. Our
scheme does not have this weakness: it is overspending robust.

Whereas it is easy to see the relationship between our scheme and other schemes
with revokable or perfect privacy, there are also schemes based on other types of architec-
tures, such as the credit card architecture. Our e-money solution is (remotely) related to



the anonymous credit card of Low, Maxemchuk and Paul [55], in which they suggest an
extension to the standard credit card system, allowing an intermediate degree of anonymity
combined with the ability to trace purchases of credit card type (i.e., not between arbitrary
participants, but only between users and registered shops). Other extensions to the existing
credit card payment system are [3, 56, 61, 75]; here, however, anonymity is not an issue,
but backwards compatibility and simplicity are emphasized.

None of the previously introduced signature-based schemes protect against the
bank robbery attack introduced in our work. Whereas this stronger attack model and its
realization in principle are perhaps mainly of theoretical interest, the means we employ to
foil the attack and the added functionality arising from the use of these methods are of
a practical nature. Protecting against bank robberies will require methods different from
those proposed earlier, as this attack is much stronger than other attacks. We claim that for
each normal withdrawal protocol in schemes based on publicly verifiable digital signatures,
there exists a blindfolded withdrawal protocol, i.e., a protocol (that is easy to calculate)
producing blind signatures, whereas the intended withdrawal protocol is not necessarily
blind. This is a special case of a result of Yao’s [86], stating that each publicly verifiable
function can be calculated from private inputs in a way that does not betray the secret
inputs, which in this case are the exact form of the coin and the secret used to sign. Yao’s
result thus implies that if only a publicly verifiable signature is used to authenticate a coin,
then a blindfolded withdrawal can be made such that neither the attacker has to reveal his
identity or the form of the withdrawn coin, nor has the Bank to reveal the secret allowing
it to sign.

This work is based on three articles by Jakobsson and Yung. In [49], we introduced
the model we employ, and gave a two-party protocol solution that protects against the user
attacks considered, and partially protecting against the Bank and Ombudsman attacks. Our
solution bears resemblance to the weak blind signatures of Franklin and Yung [33]. Two
important differences are that first, we allow for an off-line verification in the common case,
whereas they default on each (weak) signature verification being on-line with a checking
center; second, we have mechanisms to enforce legal responsibilities from the Bank and the
Ombudsman (which imply the need for real signatures rather than weak ones).

In [51] we distribute the above mentioned two-party solution to avoid the disad-
vantage of non-threshold systems with their centralized and highly sensitive functions. We
believe that for an e-money system to be usable and economically viable, it is crucial to
increase the overall trust. This issue is pursued in [51]. Here, we distributed the sensitive
functions into a system where components may be held by different entities (this was typ-
ically done for a one-party function in a system, but there we did it for a function that is
already a two-party construction.) We employed proactive tools to also enable resistance
to strong attacks that are expected over open networks (the Internet.) At the same time,
the storage requirements were reduced, and the system simplified. The sensitive actions
of producing valid coins and revoking anonymity were done only under quorum agreement
among the distributed entities, giving additional control via the distribution of authority
amongst various bodies.

This result uses magic ink signatures, which we introduced in [50]. In recent years,
various notions of distribution of cryptographic functions (signature and encryption) among
independent agents were considered. The typical added functionality of such distributed
functions include increased security of the secret key, increased availability of service, and
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increased flexibility of access, the latter by requiring a quorum to access information (as in,
e.g., [25, 36, 57]). All these notions are defined as distributed computing functions. In [50]
we suggest that the distributed signature setting also provides for extended functionality
by enabling a new notion of signature which is otherwise impossible (owing to the added
control in this case). We also propose a method to produce (computationally) blinded DSS
signatures [60] in an arbitrarily distributed manner, so that these can later be unblinded
by a threshold of servers. This makes it possible to distribute the signature generating and
signature unblinding servers, and to use proactive methods [43, 44] for maximum security
and availability. We note that other implementations of magic ink signature schemes (and
its relatives) may be used in place of the one for DSS signatures we present, although this
may affect the high level description, adversarial model, and functional description slightly.



Chapter 11

A Versatile and Efficient E-Money
Scheme

II. A System Model

The model follows the one suggested in [49] and augmented in [51]:

II.A.1 Participants

The system can be modelled by seven types of (polynomial-time limited) par-
ticipants/entities : Users (1) who withdraw money and perform payments. Users enjoy
computational anonymity. Shops (2) get money from users and attackers, and deposit it in
the Bank, while banks (3) manage user accounts, issue and redeem money. The banks are
able to alert the shops to engage in a non-standard (on-line) payment procedure. Based
on court orders banks may engage in blacklisting and tracing (as a crime prevention mech-
anism). The Ombudsman (4) participates in withdrawals and assists in reacting to court
orders. The judge (5) will employ enforcement mechanisms, and issues court orders. Finally,
there is a certification authority (6) and key directory (7) for public keys. More detailed,
the participants are as follows:

1. Users

Users withdraw funds from the Bank, and make payments to shops. They have certi-
fied public keys associated with themselves, allowing the users to identify themselves,
and sign agreements. It is the goal of the honest users to transfer funds in return for
merchandise or information. Users are concerned with being defrauded of their money,
being refused service, having their spending habits monitored, and being falsely ac-
cused of a crime. It is the goal of the honest users to transfer funds in return for
merchandise or information in a way that does not allow cheating protocol partici-
pants to defraud them. We will demand that the honest users enjoy (computational)
anonymity.

2. Shops

The shops receive payments from users and attackers. It is important for the shops
to be able to verify that they have received information that corresponds to funds,

11
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so that when the coins representing funds are deposited, the shops’ accounts will be
credited with the amount the coins represent. The shops may be interested in tracing
purchases, i.e., to match a spent coin to a user identity.

. Banks

The Bank (who is distributed w.r.t. the ability to sign and trace) manages user
accounts, issues money to users and receives spent coins from the shops. The Bank
may be interested in tracing purchases, and may cooperate with attackers and shops
in order to try to do so. Multiple, independent banks will issue and accept coins
of distinctive types. The banks are able to issue alerts, forcing shops receiving coins
issued by the alerting bank for specified time periods to engage in a protocol preventing
an attacker to successfully spend money obtained by robbing the bank. Furthermore,
each bank can after a court order blacklist coins or have payments traced.

. Ombudsman

The Ombudsman (who is distributed w.r.t. the ability to sign and trace) is the
representative of the honest user. The Ombudsman will after a court order assist the
Bank in tracing coins of a suspected attacker, but will not assist anybody in any other
tracing. We require the Ombudsman to be available for the tracing of attackers by
the Bank, and (in the case of on-line withdrawal protocols, such as the one we use
here) to be available to the Bank during each withdrawal session. Besides availability
and non-cooperation with the Bank regarding traceability, the Ombudsman will not
have to be trusted in any other way, neither by the Bank nor the users. Specifically,
the Ombudsman will not be able to frame users or successfully cheat any participant.
Efficiently, there may be one Ombudsman per Bank, but we will treat the Ombudsman
as one single (although distributed) entity in our discussions. The Ombudsman and
the Bank have a private communication channel that allows them to communicate
the status of transactions, e.g., alert another if a bank robbery is launched.

. Judge

The judge has the task of resolving conflicts between the above participants after
analyzing the corresponding transcripts. The judge will issue court orders forcing
the Ombudsman to cooperate with the Bank to trace coins or user funds specified
by the judge. The judge will not have to be trusted in any way by any participant,
apart from fulfilling these functions. The judge may be modelled by a multiplicity of
independent judges with the same goals and behavior, but we will treat it as a single
entity in our discussions.

. Certification authority

The certification authority certifies public keys of participants, including keys (of time-
limited validity) used by the Bank and the Ombudsman to produce authentications
on coins. The certification may have a hierarchical structure, but, again, we will think
of it as a single participant.

. Key directory

The key directory stores all currently certified public keys. It is the purpose of the
key directory to inform all participants what the currently used public keys are.
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The Bank, the Ombudsman, the judge and the certification authority will each
have a public key associated with themselves. These public keys (but for that of the
certification authority) will be certified by the certification authority. Individual shops
will have a (not necessarily certified) public key associated with them.

Remark: It is possible to envision a scenario in which no outside Ombudsman is needed,
but where we allow a conglomerate of banks to control this entity.

IT.A.2 Attackers

An attacker is any coalition of protocol participants that deviate from the specified
protocols. Attackers may corrupt any set of the Bank and Ombudsman servers and may
depart from the prescribed protocols in any way, including forcing other participants to
engage in protocols different from those that are prescribed, in order to obtain spendable
money or services for a greater amount than their accounts are billed. An attacker may force
any entity to give out its secret keys. It is the goal of the attackers to obtain spendable
money or services for a greater amount than their accounts are billed. We distinguish
between two different attackers: (1) the weak attacker may only corrupt a non-quorum of
Bank and Ombudsman servers in each time period (see [44, 43]), as well as any number
of users and shops, and (2) the strong attacker, who can corrupt any number of Bank and
Ombudsman servers.

IT.A.3 Time

Time is divided into (possibly overlapping) time periods® of publicly known starts
and lengths. A withdrawn coin is only accepted by the Bank for credit within its correspond-
ing time frame, specified in the coin. Thus, each coin will have an explicit expiration date,
after which it will not be accepted for deposit (and therefore not as payment either.) The
expiration date of the coin will be part of the coin, and set by the Bank in a non-blindable
fashion. It will be readable by all participants, but alterable by nobody.

II.A.4 Trust model

The following basic assumptions underlie the architecture:

1. The users trust that a quorum of the Bank and the Ombudsman servers will not
conspire against them. (A signing quorum is a set of servers containing at least one
Bank server; a tracing quorum at least one Ombudsman server — but typically more
than that.)

2. The Bank trusts a threshold of the Ombudsman servers to be available during with-
drawals, for traces, and immediately after a bank robbery has taken place.

3. All the participants trust the judge to be honest and fair.

4. All the participants trust the certification authority only to perform certifications of
accurate documents and correctly associated pairs of public keys and names of owners.

!These will be of a length sufficient to strike a good balance between storage requirements and degree of
anonymity, two contrasting goals. The time intervals are for simplicity multiples of the refresh intervals in
the proactive secret sharing.
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5. The users trust the Bank not to incriminate them, or to steal their money by annulling
their accounts, etc.?

I1.A.5 Events

The following events are part of the system description:

e Open an account

A user opens an account with the Bank by identifying himself (physically, or by an
accepted alias,) supplying other personal information (such as address,) and giving
the Bank a key® to be used for the user to prove his identity using a standard proof
of identity.

o Withdraw money

A user withdraws money by first engaging in an identification session with the Bank,
proving his identity in order for the Bank to be able to associate the proper account
with the withdrawal session. Then, the user, the Bank and the Ombudsman engage
in a three-party protocol giving the user a coin that represents funds, and giving the
Bank (and possibly also the Ombudsman) a record of the transaction. Different types
of coins will exist, representing different values and expiration dates.

o Refresh money

In effect, this combines a spending and deposit protocol with a withdrawal protocol,
thus updating a coin with respect to the expiration date. Alternatively, a shop or a
user can exchange coins of different expiration dates (using two simultaneous protocols
for spending money with opposing flow of coins,) allowing the customer to obtain coins
that can be deposited at a later date than his original coins would be spendable.

e Spend money (off-line version)

A user spends money by engaging in a protocol with a shop, providing the shop with a
transcript that could not have been constructed using any public algorithm available
to the user or the shop, or any protocol other than the payment protocol. The shop is
able to verify that the coin received is of a form that will be accepted for credit when
given to the Bank.

o Whitelist

After a bank robbery has taken place, the Bank and the Ombudsman cooperate to
produce a list describing all properly withdrawn coins (the so called white list), to
which deposited coins later can be compared. The white list is produced in a manner
that does not allow any set of servers that does not include a quorum of Bank and

2This assumption can easily be avoided to the price of an inefficient system in which each transaction
has to be signed by as well the Bank as the users, and signatures exchanged using methods for simultaneous
exchange of secrets.

Remark: if the user does not desire to withdraw money without physically appearing in the Bank and
identifying himself, the user does not need to establish such a key. Furthermore, whereas public key and
zero-knowledge methods may be involved for the proof of identity, other methods can be employed if the
Bank is trusted not to steal.
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Ombudsman servers to correlate any withdrawal view to the coin withdrawn in the
corresponding session.

e Spend money (on-line version)

This protocol is the same as above, with the exception that the shop needs to engage
in an interaction with the Bank (or proxy) in order to verify that the coin will be
accepted for credit when given to the Bank, i.e., that the spent coin is on the white
list. (We will specify later how the shop knows whether to engage in the off-line or
on-line version.)

e Deposit money (off-line version?)

The shop can deposit coins by sending them to the Bank®, which will verify that
they are of a correct form and have not been previously deposited, and will credit the
wanted account with the corresponding funds. (The name of the account can be made
explicit in the coin by the shop during the protocol during which he receives the coin
from the user, thereby allowing the coin to be associated only with this account.) The
Bank will give the shop a signed receipt specifying the transaction. The transcript is
saved by the Bank until the end of the time interval associated with the coin.

e Deposit money (on-line version)

This protocol is the same as above, with the exception that the Bank will also verify
that the deposited coin is on the white list before accepting it for credit.

o Register new keys

The Bank and Ombudsman will generate and by means of the key directory distribute
authenticated public keys to be used for verification of Bank/Ombudsman signatures
on coins. Since the exact form of a correctly formed authenticated coin will be a
function of time (due to the expiration dates of coins,) the Bank will have to gen-
erate and have distributed such keys repeatedly. The Bank and Ombudsman will
not publish the public keys of future time intervals too early in advance. The Bank
and Ombudsman will sign the new public keys using a public key used solely for this
purpose.

e Detect overspending

If the Bank receives transaction transcripts whose total value transferred exceeds the
value represented by the corresponding coin, these transcripts are evidence that the
coin was used in an illegal fashion. The transcripts can be used in place of a court
order, forcing the Ombudsman to interact with the Bank to trace the identity of the
withdrawer of the coin.

*An on-line protocol can trivially be obtained by combining the protocol for spending money with that
for depositing money. In such a case, the shop would deposit funds before accepting the payment. It may
be required by the Bank that certain types of payments be on-line, or may be desirable by the merchant to
minimize its risk. Since this type of on-line payment protocol is a special case of the off-line payment and
deposit protocols, we will henceforth deal only with the more general case of off-line payments. Note that
this form of on-line protocol would differ from the one associated with a bank alert.

°If there is more than one bank, the coin can be deposited in any bank still, but this bank will have to
send it to the issuing bank for overspending verification, etc.
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o Trace

The Bank and the Ombudsman interact in a protocol allowing the Bank to match the
traced coin or traced identity to the corresponding identity or coin, or to verify if a
particular pair of a coin and withdrawal transcript correspond to each other, without
revealing any additional information.

e Blacklist

Based on a court order or an overspending, the Bank can publish a list of coins to be
put on vs. taken off the list of coins not to be accepted. This prevents coins received
in so called blackmail attacks, and similar attacks, from being used.

o Fund freezing

The same as blacklisting, with the difference that it may not be permanent.

e Fund “thawing”

The Bank which issued the freezing of funds can by sending out a second certified
message remove coins from the list of frozen funds, allowing them to be used for future
transactions.

e Alert (on/off)

The Bank can alert all the shops to use the on-line protocols when receiving a payment.
This is done with respect to coins of certain expiration dates (which can be identified
by the shops during the payment protocol.) Similarly, the Bank can remove the
alert for coins of certain expiration dates. The alert mechanism is used to prevent
coins received during a so called bank robbery from being used®. (Notice that such a
coin may be “withdrawn” using a blindfolded withdrawal protocol, thereby making a
normal tracing or blacklisting impossible.)

e Arbitration

If there is any disagreement or suspicion of criminal activity, the case can be taken to
the judge. There are protocols specifying the interaction between the involved parties
and the judge in such cases; these include requests for court orders and the issuing of
these. We will elaborate on this below, under the mechanisms to ensure justice.

e Certification

There will be protocols for obtaining and denouncing certifications on documents such
as public keys, as well as publicly available algorithms for verifying the certifications
made.

SFor the bank robbery attack that corresponds to a known attack (i.e., in which the issuer is forced to
give out signatures or secret keys), we assume that the propagation rates and read priorities of messages that
are alerts are higher than those of coins being withdrawn and spent, i.e., that all shops will be made aware
of an alert before a coin withdrawn at the same time as the alert is made can be successfully spent. This
is a realistic assumption since the Bank is in command of both the issuing and the alert, and can delay the
execution of the former just a little. For the bank robbery attack corresponding to an insider attack (which
may go undetected for some amount of time,) only unspent funds can be blocked by the alert; however, the
Bank will still be able to earmark what already spent funds were received in the attack, which may give
important information in itself.
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e Update public keys and verification algorithms

After a change to the public data has been made, this will be made public by the key
directory, and all participants can obtain and perform the updates.

II.LA.6 Mechanisms to ensure justice

There are complaint procedures allowing participants to prove the possible wrong-
doings of other participants to the judge. Specifically, there will be ways to prove that
some Bank or Ombudsman servers do not follow the withdrawal protocol, or that the Bank
refuses to accept and give credit for a properly withdrawn but not previously deposited
coin. Also, there will be specific methods for obtaining court orders, making sure that a
malicious bank cannot trace coins that were not meant to be traced by using “bait and
switch”. Furthermore, different ways to ensure a fair exchange of payments and merchan-
dise (i.e., that neither the payer nor the payee can cheat another) can be implemented (see
[46],) adding procedures for obtaining the fair exchange and for filing grievances.

II.B Attacks and Requirements

II.B.1 Attacks

An attacker is somebody who deviates from the prescribed protocols. With an
honest bank, we mean a set of honest Bank servers, of sufficient size to make a decision,
such as accepting a payment. We consider the following attacks, some of which are only
presented in an informal way, but which are covered by formal requirements:

Attack: Forgery

When a set of users, shops, and Bank and Ombudsman servers, not including a quorum
of the latter two, after engaging in withdrawal protocols withdrawing funds for a value of
V), are able to perform payments for a value exceeding V, which are later accepted by an
honest bank as valid.

Attack: Impersonation
The attacker is a coalition of users, shops, Bank and Ombudsman servers. In a successful
attack, an honest user is charged more than his withdrawals total.

Attack: Overspending

The attacker is a coalition of users, shops and Bank and Ombudsman servers, not including
a quorum of the latter. A successful attack is when the attackers after withdrawing an
amount V perform payments for a value V; > V, such that: (a) these are accepted as valid
by a set of honest shops, but (b) not all of these are accepted by an honest Bank as valid.

Attack: Illegal purchases
These are transactions that, whereas perfectly valid from a money-flow point of view, are
not legal by the nature of the products or services paid for.

Attack: Money laundering
An illegal transfer of funds performed in order to misrepresent the distributions of incomes
of (or hide the existence of ) organizations.
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Attack: Blackmail

An attacker A directs a user U to engage in a withdrawal protocol using a protocol Py, pos-
sibly different from any protocol in use, but generating a Bank/Ombudsman view indistin-
guishable from a normal withdrawal from user ¢’s account. A, i and the Bank/Ombudsman
then run the protocol P, such that A’s view during P; is indistinguishable from his view
during P,. As a result, A is able to generate a withdrawal view, indistinguishable from the
view of U during a normal withdrawal.

Attack: Bank robbery

We assume an attacker A threatens and directs the Bank and the Ombudsman to use
a protocol Py, possibly different from any protocol in use. The attacked entities agree to
engage in a protocol Py, possibly different from Py, but with a view that is indistinguishable
to the attacker from that of P;. As a result, A is able to generate a withdrawal view,
indistinguishable from the view during a normal withdrawal. We assume that the attacker
cannot spend the obtained money within a time A after the threat is over, and that this
time is longer than the propagation time for an alert”. After the threat is gone, the Bank
may temporarily change its behavior (e.g., requiring deposits to be made, or clearance from
a proxy received, before a payment is accepted.)

Attack: Illegal Untraceability

The victim of this attack is a quorum of Bank and Ombudsman servers, and the attacker is
a coalition of users, shops, and Bank and Ombudsman servers, not including any member
of the victim. The attack is successful if an honest bank accepts a deposit that if traced by
the quorum would not identify any member of the set of attackers, whereas at least one of
these participants would be identified if the attack was not performed.

Attack: Malicious tracing
This is an attack in which Bank and/or Ombudsman servers without legal permission trace
coins, i.e., match a withdrawal session to an identifier of a payment transcript.

Attack: Framing

Let U be a set of honest users. Consider a set A of dishonest users, shops, Bank and
Ombudsman servers, not including any member of /. A framing attack is when A produces
a set of transcripts, that, if a tracing is performed with these as input, the output would
identify a member of I/ with non-negligible probability.

Attack: Embezzlement

Let U be a set of honest users, performing withdrawals for a value V. An embezzlement is
an attack in which A, a set of users, shops, Bank and Ombudsman servers, not including
any member of ¢/, makes only a value Vy < V; be accepted as valid by an honest set of Bank
servers, after members of U spend funds with a value Vy <V from the said withdrawals.

II.B.2 Requirements

Before stating the requirements, let us specify the relationship between with-
drawals and deposits. In the following definitions, we assume the payment method has
the following general form: After each withdrawal protocol, the Bank stores a record tag

"This attack models well an electronic bank robbery in which the attacker wants to spend the loot on
physical merchandise, whose delivery takes time A.



19

(and the withdrawer’s identity, if it is not a coerced withdrawal). The shop has a procedure
Correct(coin) which specifies whether a coin is valid. In the off-line mode (which is the
normal case) this is publicly computable, and in the on-line mode (which the Bank may
require after a successful bank robbery attack has been performed) it can only be com-
puted by involvement of a quorum of Bank and Ombudsman servers. There is a relation
Corresponds(tag, coin) representing whether coin is a spending of the coin withdrawn when
tag was generated. This relation is computable only by a quorum of Bank and Ombuds-
man servers. Let 7 be the set of tags, and let C be the set of identifiers of valid spending
transcripts.

In order to prevent or limit the impact of the previously specified attacks, we put
forth the following requirements:

Requirement EM1: Unforgeability
Forgery is infeasible.

Requirement EM2: Impersonation safety

Impersonation is infeasible if the coalition of attackers does not involve a quorum of Bank
and Ombudsman servers, or if the transaction can be legally challenged by taking the case
to a judge.

Requirement EM3: Overspending detection

Let A be a set of attackers performing an overspending attack in which a value V is with-
drawn and a value Vy > V is spent. If the scheme satisfies overspending detection, then a
quorum of the Bank and Ombudsman servers will be able to establish (a) the sum of the
overspending, i.e., V1 — V, and (b) the identity of at least one member of A.

Requirement EM4: Overspending robustness

Let Ay be a set of attackers performing an overspending attack in which a value V is
withdrawn and a value V; > V is spent. Let Ay be a set of users, shops, Bank and
Ombudsman servers, disjoint from A;. A scheme is overspending robust if it is infeasible
for any set Ay to make an honest quorum of Bank and Ombudsman servers running the
overspending detection protocol output a sum of overspendings Vo — V > V; — V and only
identities of participants in A;.

Requirement EM5: Traceability

Any Bank and Ombudsman quorum can, regardless of the actual withdrawal protocol used,
and regardless of whether other Bank and Ombudsman servers refuse to cooperate, perform
the following actions:

1. Given a tag € T, calculate coin € C, such that Corresponds(tag, coin).
2. Given a coin € C, calculate tag € 7, such that Corresponds(tag, coin).
3. Given a tag € 7 and a coin € C, establish whether Corresponds(tag, coin).

All of these actions are performed in a way that does not give any set of participants a non-
negligible advantage (apart from the advantage gained by knowing the result of the above
calculation) in establishing whether Corresponds(tag’, coin’) for any tag’ € 7, coin’ € C,
but (coin’,tag’) # (coin,tag).
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Requirement EM6: Revocability

Any traced coin can be permanently resp. temporarily made unspendable by blacklisting
resp. freezing. In such an action, the Bank announces that it will not accept funds descrip-
tions with identifier coin € C for credit, for a coin corresponding to the funds blacklisted or
frozen.

Requirement EMT7: Anonymity

The probability for any coalition of participants not containing a quorum of Bank and
Ombudsman servers to determine whether C'orresponds(tag, coin) holds for any particular
pair (tag,coin) € 7 x C is not non-negligibly better than that of a guess, uniformly at
random from all possible pairs, given all the available pairs of descriptions of tag’ € 7 and
coin’ € C and all the already computed relations C'orresponds available.

Requirement EM8: Framing-freeness

Framing attacks are infeasible if (a) the withdrawer has a public key associated with him,
and he signs withdrawals, or (b) there is no quorum of Ombudsman and dishonest Bank
servers.

Requirement EM9: Refundability
A victim of an embezzlement attack can prove that the attack took place, resulting in the
identification of at least one of the attackers.

II.C Definitions

Definition 1: Cryptosystem
A cryptosystem has the following components:

o A security parameter k and a message space, My = {0, 1}k, to which the encryption
algorithm may be applied.

e A p-time key generation algorithm KG producing a random pair (PK, SK) of keys on
input 1%,

o A p-time encryption algorithm F. This is a probabilistic algorithm which given a
message m and a public key PK outputs an encryption m of m with respect to PK.

o A p-time decryption algorithm D. This is an algorithm which given F, 7, and
(PK, SK), outputs m.

Security:

For public key systems, (PK, SK) is a pair of a public and secret keys, whereas for private
key systems PK = SK. Intuitively, a cryptosystem is secure if there does not exist a p-time
decrypter D that (in the public-key case gets PK and) for infinitely many k succeeds to
decrypt an encrypted message 7 with some non-negligible probability in &, over all choices
of KG and m, for m = F(PK,m). More formally, we adopt the polynomial security of
Probabilistic Encryption: (see [40]), where there is no p-time algorithm A that has a
non-negligible advantage (in k, over all choices of G and mg, m4) in distinguishing between
E(PK,mg) and F(PK,my), given (mg, mq, PK).
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Definition 2: Signature Scheme [26, 41] (by exposition of [4])
A digital signature has the following components:

o A security parameter k, a message space and a key generation algorithm as above.

o A signing scheme® S = (Ss, Sgr), where Sg and Sp are probabilistic p-time algorithms
run by the signer vs. the receiver of a signature s on a message m. The signer knows
the pair (PK, SK) of matching public and secret keys, and the receiver knows PK.

e A verification algorithm V. This is a p-time algorithm which given s, m, and PK (as
well as some private input in special cases, which will be discussed below) outputs 1
if s is a valid signature for the message m with respect to the public key PK, and 0
otherwise.

Let us now consider some properties of signature schemes, most of which are
orthogonal to each other:

Security:

We say that an attacker succeeds to forge a signature if he manages to produce a signature
on a message that was not previously already signed. A signature scheme is secure if there
is no p-time forger F that, for infinitely many k, succeeds with a non-negligible probability
to forge a signature s on a given message m so that V (s, m, PK) = 1. In particular, we can
let the attacker use the signature device first and require security. We may require security
against Adaptive Chosen/Random Message Attacks [41], namely that security holds
w.r.t. an F performing a successful forgery after given access to a signature oracle a
polynomial number of times on chosen (resp. random) messages. Schemes that are secure
against adaptive chosen message attacks are also called existentially unforgeable.

History-Free:
A signature scheme is history-free® if the signing scheme is not a function of previously
signed messages.

Blind Signature: [17]

A blind signature scheme is a pair S = (9, Sg) that allows the receiver to obtain a valid
signature that is computationally uncorrelated to the transcript seen by the signer during
the protocol.

Transparently Blindable Signature: [49]

A signature function S = (Sg, Sg) is transparently blindable if there exists a blind signature
scheme (Sg, 5%) producing an output with the same distribution as S does, and the signer’s
view is indistinguishable for the two protocols, i.e., the signer cannot tell whether he signs
regularly or blindly.

Blindfoldable Signature: [49]

The signature scheme S = (Sg, Sr) is blindfoldable if there exists a blind signature protocol
(5%, 5%) producing an output with the same distribution as 5 = (Sg, Sg) does.

8Note that the signing scheme may be interactive. We make the distinction between interactive signing
schemes and protocols in that we consider the protocol a particular implementation of the interactive signing
scheme.

A signature scheme that is not history free may have problems if used in anonymous e-money schemes,
as shown in [68].
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Dual Verification Signature Scheme: [49]

A dual verification signature scheme is a six-tuple (My, KG, S, V1, Va, 1), with the following
property: (My,KG, S, V1) is a signature scheme with publicly verifiable signatures, and
(M, KG, S, Vz) is a signature scheme where a signature can only be verified by interaction
with a authenticator. In other words, the function Correct = (Vi,V,7) is publicly com-
putable in the first case (7 = 1,) but can only be done by the Bank and Ombudsman in the
second case (7 = 2.) Here, (m, s) may be a correct message-signature pair w.r.t. one of the
schemes, but not the other. We call 7 the triggering condition; this decides whether V; or
V5, shall be used for verification of a signature.

Definition 3: Challenge Semantics [49]

The challenge semantics of a coin describes the functionality of the coin by assigning different
meanings to different bits of the challenge. It is not possible to alter the challenge semantics
of a coin once it has been spent.

II.D Building Blocks

Coin Signature Scheme:

Fach coin will be represented by a secret key / public key pair (2coin, Ycoin). The keys
are associated with a signature scheme S that is existentially unforgeable, and that has
a public verification algorithm, V. A lot of schemes may be used for this, e.g., RSA [72],
ElGamal [27], and related schemes like [1, 77]. In order to heuristically produce existentially
unforgeable signatures using message-recovery schemes like these, the standard method is
to apply a collision resistant one-way function unrelated to the signature scheme to the
message to be signed before the signature is calculated (see also [69]). More specifically, a
random oracle is needed (see [5, 6].)

Bank/Ombudsman Signature Scheme:

The Bank and the Ombudsman will in a distributed fashion calculate a signature s¢y;, =
SB1o(Ycoin) on the public key ycoin associated with a properly withdrawn coin. The sig-
nature scheme is not transparently blindable, is history-free, and has a dual verification
scheme where all the valid message-signatures pairs under V5 also are valid under V;. The
non-public verification algorithm V5 is implemented by a list of valid tags to which a po-
tential signed message can be matched to for verification. For security reasons, we want
the signature generation to be a distributed function, calculating a signature from shares
of the message using shares of the secret. We employ methods for proactive secret sharing
and function evaluation [43] to do this. We use the magic ink [50] generation of DSS [60]
signatures, i.e., a distributed signature generation employing computational blinding, such
that the blinding can (only) be removed by a quorum using an unblinding algorithm.

Probabilistic Encryption Scheme:

Let (EB,, Dp,) denote the probabilistic encryption vs. decryption algorithms of the ith
server of the Bank, using the Bank’s public key for encryption and its secret key for de-
cryption. Similarly, (Eo,, Do,) are the public key probabilistic encryption and decryption
algorithms of the ¢th server of the Ombudsman. Any public key encryption scheme can
be employed for these. Furthermore, let (Ex, Dx) denote a symmetric key probabilistic
encryption/decryption scheme with key K. The schemes will be augmented using standard
methods [40] for making the encryption probabilistic.
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A Mechanism for Tagging:

Each withdrawn coin will be tagged by the Bank and Ombudsman in order for it later to be
traceable. The generation of the tagis a part of the signature generation scheme, which we
will elaborate on later. The tag has the property that Corresponds(tag,coin) is satisfied
for the coin withdrawn.

II.LE The Basic E-money System

II.LE.1 Withdrawing a Coin

A coin is represented by a pair (Zcoin, SCoin), Where scoin = SB/0(Ycoin) for the
public key yooin corresponding to the secret key z¢yiy,. In order to perform the withdrawal
of a coin, the following protocol is executed:

1. The withdrawer, whom we will call Alice, runs the key generation algorithm to get
(ZCoin, YCoin )- She proves her identity to the Bank, potentially in a manner that does
not allow an eavesdropper to get any information about her identity. This can be
obtained by, e.g., probabilistic encryption of transcripts. If needed, Alice establishes
shared session keys with each server of the Bank and the Ombudsman by randomly
choosing such keys and encrypting these using the public keys of the intended receivers.
(Which can be the same as the public key shares of the signature scheme.)

2. Using the magic ink signature generation scheme, Alice, the Bank and the Ombuds-
man servers compute an output so that Alice gets a Bank/Ombudsman signature
SCoin = SB/O(yCOm), and the Bank (and possibly the Ombudsman) servers get a tag
tag, linked to the signed message, i.e., such that Corresponds(tag,coin) is satisfied,
where coin is a function of (yYcoin, Scoin). Here, Corresponds is always computable
by a quorum of Bank and Ombudsman servers, but not computable by less than such
a quorum. The Bank saves tag in a secure database, along with Alice’s identity and
an identifier or classification of the withdrawal session.

II.E.2 Spending a Coin
A coin (Zcoin, SCoin) is spent in the following way:

1. The spender of the coin, Alice, sends (Ycoin, Scoin) to the payee, Shop, who verifies
the validity of the message-signature pair (ycoin, Scoin) using Correct.

2. Shop sends the challenge ¢ to Alice. The challenge may to some part be of a prede-
termined form, using challenge semantics to implement functions like divisibility, etc.,
and to the other part random and set by Shop.

3. Alice sends the answer a = 5, . (¢) to Shop, who verifies that V,__. (a,c) =1, and
if the signature is valid, saves the transcript (ycoin, SCoin, €, @).

We note that the above can be made non-interactive by the use of predetermined
contracts (e.g., “by clicking here you agree to pay $1.50 for the document.”)
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II.E.3 Depositing a Coin

A spent coin is deposited by forwarding the transcript (Ycoin, Scoin, ¢, @) to the
Bank. The Bank verifies that Correct(ycoin, Scoin ), and that V. . (a,¢) = 1. The Bank
further verifies that the same transcript has not been deposited before, and then credits the
depositor’s account. Each time a spent coin is deposited, the Bank will after verifying the

correctness of the related signatures perform the following accounting:

1. If that exact transcript (Ycoin, SCoin, €, @) has already been deposited, it will ignore
the transcript, since it is only repeated. In this case, no credit is given.

2. Otherwise, it will add the value of the spending to the total value this coin has been
spent for (0 if it has not previously been spent.) Then, it credits the depositor’s
account with the amount of the spending.

3. If the total value spent using any coin exceeds the value of a coin, then the corre-
sponding coin has been overspent.

If an overspending has been performed, i.e., if there are signed messages using the public
key of this coin, such that the sum of their implied values exceeds the allowed value, then
these transcripts will constitute a tracing order, and a trace will be performed.

II.E.4 Tracing

When a coin needs to be traced, the Bank will either (case 1) have as input an
identity ¢d of a user, and will want to know what coin(s) (ycoin, Scein) this person withdrew
in a certain time interval or during a particular withdrawal session, or (case 2) have the
description (Ycvin, Scoin) Of a coin and want to know the identity id of the withdrawer,
or, finally (case 3) determine whether a certain coin (Ycoin, SCoin) Was withdrawn during a
specific withdrawal session. In chapter III we show how traces can be performed.

II.LE.5 Alert

If a successful bank robbery takes place, the Bank will immediately alert all shops
that they now must use the on-line verification protocol for Bank/Ombudsman signatures,
i.e., deposit each coin before it is accepted as a payment. In order not to have to involve
the Ombudsman for each payment, and in order to be able to use proxies, the Bank and the
Ombudsman can produce the whitelist from the list of tags affected (the tags with the same
expiration date as the bank robbery coins), to which coin transcripts can be compared for
validity check. The list will be produced in a way that does not compromise user privacy.
This can be done using standard multi-party protocols that hide the secret input of the
participants (see [86]) or using more efficient and specialized protocols (e.g., [48].) Before
any coin is accepted, the Bank or a Bank proxy will verify that the coin is in the list of
valid coins.

II.F Versatility of the Monetary System

The basic system can now be altered to encompass a wide variety of modular
efficient extensions based on what we call challenge semantics. The idea is to extend func-
tionality by letting some number of the bits used for the challenge represent the “meaning”
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of the payment, e.g., the division of a coin, a check, a credit payment, a surety bond, etc.
Some bits can represent the condition under which the coin can be cashed, and still other
bits can be set to designate the identity of the payee, or the accounts in which the payment
can be deposited, thereby making (among other things) hold-ups of shops futile.

Long contracts can be used by hashing them and using the resulting hash value
as part of the challenge; part of the challenge can be encrypted to limit the readability to
certain groups of parties or certain situations, or to communicate a distress situation (as in
23]

Just like different maximum values are marked by different Bank signatures on the
coins, different limitations of functionality can be imposed by the Bank in the same way.
Thus, one type of signature can mean that the coin is limited for use as a check, etc.

II.F.1 An Extension to Divisible Coins

Change giving mechanisms are trivially part of any system as long as the shop
has sufficient “change,” and can spend the corresponding coins as a payment to the user,
to negatively offset the sum paid. However, this method is inconvenient due to the fact
that it requires the shop to have change, and the payer to store the same. Even worse,
it is contradicting the anonymity requirements, as it would allow the change returned to
be used to identify the customer of a certain transaction with the cooperation of the shop.
Therefore, in order to avoid multiple coins to be required to match a particular sum (which
is a second trivial solution to the problem,) we opt for the more attractive solution of coin
divisibility.

Allowing coins to be divided into arbitrary fractions can trivially be obtained in
our system (divisions are linkable, though). The Bank will accept deposited coins as before,
and credit the accounts of the depositor by the amount indicated in the challenge, or the
full value of the coin, whatever is lower. An overspending has occurred if one coin is used
to transfer more funds than its related value allows. If V is the value of the coin, and v; the
value transferred in the ith spending of the coin, the coin is overspent when % v; > V|
where & is the number of times the coin is spent. When a coin has been overspent, the Bank
will, as before, show the corresponding transcripts to the Ombudsman, who after verifying
that they indeed constitute an overspending will participate in a tracing of this coin.

II.F.2 Electronic Checks and Credit Cards

An electronic check is a transfer of funds with an amount that is not fixed at the
time of the withdrawal. Similarly, a credit card purchase is a payment using a coin of no
intrinsic value. After being spent, which in either of these cases will be done by “inscribing”
the value spent, just as for the divisible coin, the coin is deposited. Then, since the value
of a coin of this type in itself is zero, this corresponds to a (legal) overspending of funds,
and the identity of the spender will be obtained using the normal procedure. Alternatively,
a dedication of the usage of some bits in the challenge can be used to signal the difference,
thus introducing further semantics of the challenge, and signaling to the Bank and the
Ombudsman to treat the coin in a special way. Then, when the identity is obtained, the
amount indicated on the check is subtracted from the balance of this person. It is possible
to implement (bank) checks with maximum amounts, such that if these are exceeded, the



26

“overspending” is no longer legal and constitutes an actual overspending. Next, we briefly
describe two alternative solutions, both granting anonymity:

1. The Bank keeps anonymous accounts (with positive funds for checking accounts and
negative funds and limits for credit card accounts) that are replenished/paid off by
anonymous user transfers (i.e., anonymous payments by users to the corresponding
accounts). Here, each coin, which may be signed by the Bank/Ombudsman using
another signature scheme than “cash” coins, corresponds to such an account.

2. We can, by further employing challenge semantics, use parts of the challenge to com-
municate the number to an anonymous account and a one-time password. Again, the
account would be replenished (or the balance paid off) by means of normal e-money
payments to the Bank, designated to the anonymous account.

In either of the two cases, user misbehavior can be detected, after which revokation methods
would be applied. Particularly, if the balances are not paid off at the agreed time, then a
normal trace is performed.

II.F.3 Obtaining a Fair Exchange

A fair exchange of payments for an item (goods or services) is a barter where no
party obtains the item desired without handing over the item offered. We sketch how the
concept, introduced in [46], can be applied to our payment system in a modular way, using
a similar approach.

The idea is for the user to rip a coin, and in a first phase give the ripped coin to
the shop, which sends the merchandise/information after verifying that the coin is correct.
It is important that the shop cannot deposit the ripped coin for credit, but also that the
user cannot use it for something else (without overspending it). Thus, the user will trust
that the shop will send the merchandise/information, as he can verify the correctness of the
funds (but not deposit them for credit). On the other hand, the shop knows that the user
will send the “second half” after having received the merchandise/information, as the coin
has already in a sense been spent, and cannot be used for anything else.

This can be achieved by the use of challenge semantics. In a first payment of a
coin, the payer will use a challenge where one bit specifies that the coin is void. Thus, it will
not be possible to deposit that coin for credit with the Bank. The “second half” is given
using the very same challenge but toggling the void bit of the same coin. This is a payment
that the Bank will give credit for. Should, however, the second half never be given, then
the payee can use the first part to file a complaint, preventing the payer from being able to
use the coin to its full value without overspending it.

II.F.4 Event Triggered Payments

Using challenge semantics, it is easy to create conditional payments, where the
payment takes effect triggered by events. Examples of situations where this is useful are for
insurance policies, surety bonds, lotteries, etc. (see [54]). This will be done by putting a
(possibly hashed or encrypted) description of the triggering events in the challenge. Before
giving credit for a deposited coin with a bit specifying conditional set, the Bank would have
the corresponding triggering function evaluated to make sure that the coin can be cashed.
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The events can be either of pure conditional character or just of a time dependent type. An
example of the former type would be “if Alice cannot pay her rent, then this check can be
used for that purpose,” and an example of the latter is “this coin cannot be cashed until

July 7th.”

II.LF.5 Micro-payments

Micro-payments can be implemented (as in [53, 71]) by using the last hash value
in a chain of such values as a challenge; later, the spender can gradually pay by sending
over hash preimages to the merchant. Since our scheme is relatively light-weight, it is well
suited to implement anonymous micro-payments.

II.F.6 Negotiable Anonymity

Challenge semantics can also be used to sell one’s privacy in any one particular
payment. This can be done for marketing reasons, for example, and technically achieved
simply by indicating in the challenge that no anonymity is desired. This can be combined
with a conditional, giving the user losing his or her privacy a cash-back in those cases the
anonymity is removed. Also, the challenge can specify who can obtain the information,
whether partial information can be given (e.g., only age and profession, but never name,
etc.) and conditions of the release.

II.G A Note On Efficiency

First, the computational and communicational costs for withdrawing and storing
a coin do not depend on the number of times it can be spent. For other schemes offering
k-spendability, these costs are linear in k. For example, using our proposed magic ink
DSS scheme, we get the following: Apart from the counter and independently of the value
of k, where x is the number of times the coin was spent, the user has to store only one
DSS signature, i.e., 320 bits. This is significantly less than the amount stored in most
other electronic cash schemes. It is particularly competitive for large values of k. Likewise,
there is no extra cost associated with divisibility of coins or checks, or with other extended
functionality obtained by the use of challenge semantics.

Second, when a user spends a coin, the transcript (ycoin, SCoin, ¢, @) will have to be
transferred first between the user and the shop, then between the shop and the Bank, where
it will be stored until the coin expires. For the maximum keylength of DSS signatures, ycooin
is 1024 bits long: sc.i, and a are each 320 bits; and ¢ is the size of the challenge'®. This,
too, compares very well to other schemes.

II.H A Note on Database Reduction

Clearly, it does not make sense for the bank to store each received quadruple
(YCoins SCoin, €, ) constituting a payment transcript: if one coin is used in two payments
(which becomes natural given the simple coin divisibility), then both ycei, and scep, will
be identical for these two transcripts, since these two parameters are labels of the coin, and

%The challenge can be appropriately expanded before its usage, via a pseudo-random generator.
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not of the payment itself. Whereas this simple observation allows a lot of storage space to
be conserved, we can go much further.

The only reason why the Bank needs to store some parts of the transcript is to be
able to convince the Ombudsman (and possibly a Judge) that a coin has been overspent, to
initiate a tracing. This data can be cleverly reduced, since tracing is by quorum agreement
in our architecture, and not based on solving some x4 1 equations of degree x (which is how
overspending tracing is implemented in other anonymous e-money systems.) If transcripts
are inspected by the Ombudsman (or Judge), much of the data can later be erased, and a
short Ombudsman signature be put in its place. Let us look at what data we have to store
before and after such an inspection:

Data to be stored before inspection: For each coin, indexed by its signed public
key (Ycoin, SCoin ), the following data is stored: ((yYcoin, Scoin), (€1,a1),(€2,a2),...(Cx,ax)).
Here, £ is the number of spendings of the coin. The size of this record (using the maximum
keylength of DSS signatures) is 1354 + 480k bits.

Above, we used (Ycoin, SCoin), the signed public key of the coin, as index. If we
are using DSS signatures, we can instead use the (much shorter) signature invariant (which
is a function of (yYcoin, Scoin)) as the index. Using DSS, this invariant, call it Iy, is only
160 bits long*!.

Inspection: Consider the following (potentially partially reduced) record:

Unreduced part: ((ycoin, Scoin), (¢1,a1), (€141, @141), - - - (€, Gx)).

Reduced part: (Icoin, S, c1,¢2,...,¢-1).

Here, S is the Ombudsman signature (using an existentially unforgeable scheme with a secret
key other than the one for signing coins in withdrawals) on (/coin, €1, .., ¢1—1). During the
inspection, the Ombudsman verifies that 5 is a valid signature of his on this message, and
that Icoin is the invariant corresponding to (Ycvin, Scoin). The Ombudsman then verifies for
each newly deposited transcript (Ycoin, Scoin, €5, @), | < j < k, that this is a valid payment
transcript. Finally, the Ombudsman produces a new signature S on (Icin, €1, ... Cx).

Data to be stored after inspection: For each coin, now indexed by its signed public key
Icoin, the following data has to be stored: (Icoin, 9, ¢1,¢2,...¢x). The size of this record
(using DSS for the signature ') is 480 + 160k bits, which is approximately a third of the
size of the record before the reduction, and a tenth of the 1824k bits required if each one
of the k transcripts were saved in their entirety.

Implications of the reduction: Having reduced the database, it is no longer possible to
prove to a third party that an overspending took place; however, if an overspending would
occur, then the Bank will be able to convince the Ombudsman that a record (of a type
shown in the inspection phase) corresponds to an overspending: The challenges (cq,...,¢;)
indicate the value of the spendings, and S5 is evidence that at some earlier point, the
Ombudsman agreed that the full transcripts corresponded to the saved challenges. The
reduction does not affect any other tracing decision or tracing method (since these only use
the coin invariants as input).

" For the DSS signature (r, s) on m, this invariant is Iooin = [mr_l]q. We refer to the description of the

signature scheme in next chapter, and in particular assumption 3, for a more complete treatment.



Chapter III

Magic Ink Signatures

ITI.A Outline

Magic ink signature generation is a method to enable the generation of blind sig-
natures, which can later be unblinded by the signer (following the physical analogue given
before). This is in sharp contrast to traditional blind signatures, which are information the-
oretically blinded to the signer. The typical application where the need for this functionality
arises is for cases where privacy of individuals is assured until some criminal or otherwise
unusual activity is detected. Upon detection, identification of the origin of a signature
becomes important in identifying the source of the unwanted activity. This is applied to
private access tokens, authorized anonymous accounts, and, here, electronic money.

Both the generation and the tracing are performed under quorum action. The
generation protocol is distributed to increase the availability and security of the system;
the tracing protocol is distributed in order to increase the availability of the system, and
to introduce control. We present a method for magic ink generation (and tracing) of DSS
signatures; this can be used in the e-money scheme presented earlier.

III.B Requirements

We wish to obtain a signature scheme where blind signatures can be distributively
produced by a quorum of trustees, and these signatures always can be unblinded by a
(possibly different) quorum of trustees. Let the signature key z be distributed using a
(t5,n) secret sharing scheme, and the tracing key x; distributed using a (¢;, n) secret sharing
scheme. We want a signature scheme with the following properties:

Requirement MI1: Correctness

Signatures can be correctly generated using a (3ts,n) threshold scheme, by any size-(3ts+1)
quorum out of the m trustees, even in the case where a coalition of up to ¢, dishonest
participants attempt to disrupt the generation of valid transcripts.

Requirement MI2: Zero-Knowledge
Consider an attacker consisting of ¢, trustees, the signature receiver, and any number of
users and shops. Given one single access to a DSS* oracle! with secret key 2, the view of

1The distinction between DSS and DSS* will be explained in section IIL.E.
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this attacker, executing the signing and tracing protocols, can be simulated in p-time, and
the simulated view is indistinguishable from the corresponding view of the real protocols.

Requirement MI13: Anonymity

The signatures are computationally blinded to any set of less than or equal to ¢; trustees
(i.e., the signature cannot be correlated to the blinded signature or the signing session
by a set of less than ¢, + 1 trustees.) More specifically, the probability for any coalition
of participants not containing a quorum of Bank and Ombudsman servers to determine
whether Corresponds(tag,coin) holds for any particular pair (tag,coin) € 7 x C is not
non-negligibly better than that of a guess, uniformly at random from all possible pairs,
given all the available pairs of descriptions of tag’ € 7 and coin’ € C and all the already
computed relations C'orresponds available.

Requirement MI4: Quorum tracing

Valid signatures can always be unblinded, i.e., signatures matched to signing session or vice
versa, by any size-(#; + 1) quorum out of the n servers. In other words, no coalition of less
than t; + 1 signature servers, interacting with honest servers a polynomial number of times
in the signing and tracing protocols, can produce a valid signature that will not be traced to
the tag of one of the signing sessions by any group containing at least ¢; + 1 honest servers
in the tracing protocol.

For the use of the magic ink signatures in the context of the previously presented
e-money scheme, we have that the Ombudsman controls at most ¢, signing servers (so that
the Ombudsman cannot produce money without the cooperation of the Bank), and the
Bank controls at most #; of the tracing servers (so that the Bank cannot trace without
the cooperation of the Ombudsman.) More generally, these servers can be distributed in
themselves, the above only refers to the number of secret shares held by the different entities.

ITI.C The Digital Signature Standard (DSS)

We use the DSS (described herein) as the underlying signature algorithm [60].

Note: Since we use different moduli at different times, we use [op], to denote the operation
op modulo z, where this is not clear from the context.

Key Generation. A DSS key is composed of public information p, ¢, ¢, a public key y and
a secret key x, where:

1. pis a prime number of length [, where [ is a multiple of 64 and 512 <[ < 1024.

2. ¢ is a 160-bit prime divisor of p — 1.

3. g is an element of order ¢ in Z7. The triple (p,q,q)is public.

4. x €, Z, is the secret key of the signer.

5. y= [g“’]p is the public verification key.

Signature Algorithm. Let m € Z, be a hash of the message to be signed. The signer

picks a random number k£ €, Z,, calculates [k_l]q (wlo.g. k and k=1 values compared to
DSA description are interchanged), and sets

ro= 91,
s = [k(m+ar)]

q

The pair (r, s) is a signature on m w.r.t the signer whose public key is y = [gl’]p.
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Verification Algorithm. A signature (r,s) of a message m can be publicly verified by

checking that r = [[g 13/765_1]19]@

ms—

ITII.D Communication and Threat Model

We assume the standard computation model of polynomial-time randomized Tur-
ing machines. Players are connected by an insecure broadcast medium, and an (also polyno-
mial time limited) adversary can inject messages and eavesdrop, but can not delete messages
of any other player. Furthermore, a weak signing (vs. tracing) adversary can corrupt up
to ts (vs. t;) of the n players in the network, and by doing so, force the corrupted players
from diverting from the specified protocol in any way. A strong adversary may temporarily
corrupt all players. We refer to [36] for more details about the model.

ITI.E Single-Server (Pseudo) Magic Ink Signatures

In order to communicate the intuition of the scheme, we present a method for
producing Magic Ink DSS Signatures using only one signature server. This clearly does
not make sense practically, since this server, which knows the blinding factors, would be
able to unblind the signature at will, and so, the signature would not have any noticeable
blindness properties. However, when we later distribute the signature server, this problem
is overcome.

As mentioned, z is the distributed secret key used to produce signatures, and y = [gl’]p
its public correspondence. Similarly, we use a distributed secret key z; € Z, for tagging of
signatures; h = [gl’f]p is its public correspondence.

Let DSS* be the following modified version of DSS, in which the signature receiver gets to
see r before he specifies m:

1. The signer S generates the temporary secret key k, and from this, the corresponding
temporary public key r = [[gk_l]p]q, and sends r to the signature receiver R.
2. The signature receiver R sends the signer S the message m to be signed.

3. The signer 5 computes s = [k(m + a7)],, where @ is the signer’s secret key. s is sent

to R.

4. The signature receiver R outputs the signed message (m,r, s).

Let MI-DSS* be the magic ink generation version of the above protocol. The non-distributed
version of this is as follows:
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1. The signer S generates his part of the temporary secret key, k, and from this, the
—1

k

corresponding temporary public key 7 = [g ]p, and sends T to the signature receiver

R.
2. The signature receiver R generates two blinding factors a, 3 €, Z,, and computes the
following:
p = [mal,
r=[[],],
p = [ra]

q

R sends (u, p) to the signer 5.
3. The signer S computes o = [k(u + xp)l,, and sends o to R.

4. The signature receiver R calculates the unblinded signature s = [Ua_lﬁ_l]q, and
outputs the signed message (m,r,s).

If the signer and the signature receiver are both following the protocol, then
(m,r,s) is a valid signed message using the secret key z. This is so since r = [Fﬁ]p,

p=[mal, p=[ra],, and s =, ca 17 =, k37 (ma + zra)a™t =, k7 (m + x[gk_lﬁ]p).
1yrs_1]p]q. This is

ms—

This is the same as saying & 3 =, ms~ '+ w[gk_lﬁ]ps_l, e, r=1[g
the format of a valid DSS signature.

We note that an attack on MI-DSS™ implies an attack on DSS*, since an attacker
can force a DSS* signer to behave like an MI-DSS* signer by the use of the following
intermediary 7, that interfaces the receiver to simulate his view in MI-DSS*, and the signer
to simulate his view in DSS*:

1. The signer 5 sends a value r to Z, who sets ¥ = r, and sends 7 to the receiver R.

2. R sends the pair (y, p) to Z, who computes m = [,urp_l]q, and sends m to 5.

1

3. S sends s to Z, who calculates o = [pr™'s], and sends o to R.

Given that the signer produced a valid DSS signature on m w.r.t. its secret key & and the
temporary secret key corresponding to r, we have that r = [[gms_ly”_l]p]q. Then, since

1 1 -1

¥y oLl =

ro~WNWoro~ "1 r(orp—1)—1 _ o1 o1 . . . . .
[[glre™ M are™ ) yr(ere™) 11, = llg* "y "1,],- The distribution of (r, o) given (u,p) is
identical to that in the real MI-DSS* protocol.

ms—

m = [,urp_l]q and o = [pr7's], (ie., s =, orp™!), we have that r = [[g

III.F Assumptions

Assumption 1:

Let p,q be primes such that p — 1|¢, and let my,...m, be chosen uniformly at ran-
dom from Z,. The distribution {(m,m® m'/*)} is indistinguishable from the distribution
{(m,m"™,m")}, for unknown values z,ry,ry €, Z,.
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Assumption 2:

DSS™ is existentially unforgeable, i.e., an adversary who gets access to a DSS* signature
oracle a polynomial number of times on chosen messages will not be able to produce a valid
message-signature (m,r, s) different from those produced by interaction with the oracle.

Assumption 3:

DSS* is existentially unforgeable with respect to the ratio [mr‘l]q, i.e., an adversary who
gets access to a DSS™ signature oracle a polynomial number of times on chosen messages
will not be able to produce a valid message-signature (m,r, s) with a ratio [mr‘l]q different
from the ratios of the signatures produced by the oracle.

ITII.G Tools

Let us briefly describe what existing tools we will use in the protocol specification,
before describing these in more detail:

¢ Polynomial Interpolation Secret Sharing[74]
This is the well-known result in which a secret ¢ is shared by choosing at random a
polynomial f(xz) of degree ¢, such that f(0) = o, and distributing n points on this
polynomial (where (0, f(0)) is not one of these points). Given any ¢ 4+ 1 out of the
points, the entire polynomial f can be reconstructed, and specifically, f(0) can be
produced. However, given only ¢ such points on the polynomial, each secret o = f(0)
is equally likely. We call this a (¢, n) sharing of o.

e Joint Random Secret Sharing[28, 66]
In a Joint Random Secret Sharing scheme the players collectively choose shares corre-
sponding to a (¢, n)-secret sharing of a random value. This is done by each participant
selecting a degree-t polynomial, dealing n points on this (one to each participant);
these polynomial values are added up to determine the shares of the resulting poly-
nomial.

e Joint Zero Secret Sharing[7]
This protocol generates a sharing of a “secret” whose value is zero. Such a protocol is
similar to the above joint random secret sharing protocol but instead of local random
secrets, each player deals a sharing of the value zero.

¢ Computing Reciprocals[2]
Given a secret k € Z,, shared among players P, ...P,, we want to generate the value

[gk_l]p without revealing information on k or k1.

e Multiplication of Two Secrets[36]
Given two secrets u and v, which are both shared among the players, compute the
product uwv, while maintaining both of the original values secret (aside from the obvious
information which is revealed from the result).
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We also use a new tool:

Destructive Robustness

We introduce a new method for making distributed protocols robust: Instead of verifying
that each individual share of the calculation is correct, we first combine the shares and
then verify that the combined result is correct. If it is not, then each share of the result
is verified. A noticeable efficiency improvement can be obtained from doing so (mainly by
making the common case efficient.) Moreover, this approach allows simpler and clearer
protocol design. This is because we can allow the individual correctness verification to
destruct important properties of the produced transcript, which, if the combined result
is not correct, is a worthless transcript anyway. Therefore, we call this type of robustness
destructive robustness. Destructive robustness involves two steps: (1) combination of shares
of the result, and error detection, by verifying the correctness of the combined result.
This check can be either internally (i.e., by the same entities that produced the shares) or
externally. Then, if the combined result is not correct, the second step is invoked: (2) error
tracing, in which it is determined what server(s) have deviated from the protocol. This
kind of robustness is possible in protocols where partial incorrect results can be discarded
and when we can withstand delays of malicious servers revealing themselves in a slow pace.
We demonstrate an external method of destructive robustness for the magic ink generation
of DSS signatures.

III.G.1 On Secret Sharing

In the following, we will use two types of secret sharing methods:

1. Verifiable: In such a scheme, introduced by [21], each secret share has a public
correspondent, and the interpolation of all the secret shares corresponds to the in-
terpolation of all the public correspondents. Examples of such schemes are those
developed by Feldman [28] and Pedersen [66]; we will use the latter type.

2. Non-verifiable: In these schemes, there are no public correspondents of the secret
shares. Such a scheme can trivially be obtained from any verifiable secret sharing
scheme by stripping off the use of public versions.

It will be clear from the context what type we suggest for the different parts of the scheme;
when we use a verifiable secret sharing scheme, we will implicitly name the public corre-
spondents of the secret shares.

Distributed secret sharing: For both types of secret sharing, we can implement a dealer-
free version (as in [66]) by the following approach: Assume we want to perform a (¢,n)
sharing of a number, and each participant S; has a contribution ;. S; computes a (¢,n)
secret sharing of «;, with shares (ay1,...,a;,), and sends a;; to S;. Then, 5; computes
a; = Y 1 ji; now, (ay,...,a,) is a (t,n) secret sharing of 377 a;.

II1.G.2 On Computing Reciprocals

Given a distributively held value k, shared using a (,n)-threshold scheme, we

—1
want to calculate [¢gF ] p without revealing any secret information. The following approach,
developed in [2], is used: The servers share a secret a using a (¢,n) secret sharing scheme,
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and a value b = 0 using a (2¢,n) secret sharing scheme. Then, each server §; calculates
v; = [EZ(ZZ + bi]q and A; = [gai]p.
of A, v as the (2¢,n) interpolation of the shares of v. The result [A”_l]p, which will equal

A is calculated as the (¢,n) interpolation of the shares

[¢* ], is output.

II1.G.3 On Multiplication of Two Secrets

Two secrets can be multiplied without revealing any information about the shares
(except the wanted product of the secrets) by the following approach, developed in [36]:
let @ and b be secrets in Z,, both shared using (¢,n) secret sharing schemes. Let ¢ be a
zero-sharing using a (2t,n) secret sharing scheme. Then, the (2¢,n) interpolation of the
shares d; = [a;b; + ¢;], will equal [ab] . We note that the multiplication of two secrets
easily extends to linear combinations and arbitrary threshold schemes without altering this
method.

III.H Magic Ink Signature Generation

We assume that there are n = 41, + 1 signature servers, ¢, of which are corrupted,
and the remaining 3t; + 1 are honest. Let us now consider a distributed version of the
protocols previously presented. Here, let () be a quorum of 3¢5 + 1 servers in S7...5,,
x € Z, is the signature generation secret key (shared using a (¢,,n) secret sharing scheme)
and y = [gl’]p the public correspondent; z; € Z, is their secret key for tagging (shared using
a (t;,n) secret sharing scheme); h = [gl’f]p is the public correspondent. For our particular
solution, we require that ¢; < t,, and guarantee that a transaction can be traced by any
t; servers, as long as the corresponding signature generation was performed by at least ¢,
honest servers.

Initialization:

All the signature generating servers generate keys for authentication of data (onwards we
assume all communication to be authenticated using these keys). The servers distributively
generate a random secret z using a (ts,n) secret sharing scheme and a random secret x;
using a (t;,n) secret sharing scheme; each server S; publishes his share of the public key
yi = [g%], and h; = [g*] , from which y = [¢*] and h = [¢**]  are interpolated. Each
server 5; then proves knowledge of his secret share x; to the other servers; if some server
fails, then he is replaced and the protocol restarts.

Signature Generation:

1. The set of servers S;|i € @ distributively generate two random secrets, k,a €, Zyq,
both secret shared using a (¢, n) secret sharing scheme. We let k; and a; denote the
shares held by 9;. 9;]i € @ also distributively generate a (2t5,n) zero-sharing, where
server S; has the share b;, and a (3t,,n) zero-sharing, where S; has share ¢;.

—1
2. Using the method for computing reciprocals from [2], the servers compute 7 = [¢* [
(a) Server S; computes v; = [k;a; + bi]q, and A4; = [g“i]p. He publishes (v;, A;).

(b) The participants compute A by (%, n)-interpolation of the A;’s, v as the (2ts,n)-

interpolation of the v;’s and calculate 7 = AT Then, T is sent to R.
p
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3. The signature receiver R has a message m € Z, that he wants signed. He generates
two blinding factors, a, 3 €, Z,. He computes the following:

[

—

™ p]q
mal,
[ra

—

r
I
p

g

R then computes a (ts,n) secret sharing (u1,...u,) of p, with public information
(Mq,...,M,)=(g"...g"), and a (ts,n) secret sharing (p1,...p,) of p, with public
information (Ry,...,Ry) = (A" ... h""). R sends (u;, p;) to 5;.

4. (a) If the (M;, R;) # ([g"],,[*],), then S; publishes (i, p;) and halts; all servers
verify whether the transcript sent to S; is the encryption of (u;, p;); if it is, and
in fact (M;, R;) # ([¢""],,[P""],), then they halt.

(b) The servers (ts,n)-interpolate and store tag = (g*, h*).
(c) The blinded signature ¢ is calculated: S; generates o; = [k;(u; +2p;) —I—Ci]q. The

servers interpolate o = [k(y + xp)],, and send o to R.

5. The signature receiver R unblinds the signature: s = [Ua_lﬁ_l]q. He verifies that
the triple (m,r,s) is a valid DSS signature on m; if not, then he complains to the
signature servers.

6. If a complaint is received by the signature servers, then server .5; publishes u;, p;,
K, = [gki]p, B; = [gbi]p, C; = [gci]p; and proves to the other servers that

. 157 — M4 Pi_l
log ((97'C; YR ) = log,ys
logm(g”"Bi_l) = log, A;.

Each server verifies that the above proofs are valid, and that M; = [g“i]p, R; = [gpi]p.

Then, the servers verify the correctness of K;, B;, and C; using the below described
method. Any server who fails or refuses is replaced, and the signature generation
restarts.

Method to verify the correctness of public shares without revealing the secret
shares: Given a (#,n) secret sharing scheme and the public shares (Aq,...,A,), out of
which at most ¢ are incorrect, we want to establish which ones are incorrect. Consider the
following approach:

1. To establish A (if this is not already explicitly known, e.g., for zero-sharing), we pick
N possible subsets of size t + 1 at random, compute the interpolation of the A;’s of
these sets, and assign A to the most frequent result.

2. Let A be the assumed result of the interpolation, and randomly pick a set S of size
t + 1 such that A is the interpolation of the A;’s of this set. For each other value
A;, calculate the interpolation of A; and the values A;, 7 € 5 if this does not equal

A, then A; is assumed to be incorrect. If more than ¢ public shares are assumed
incorrect, then restart.
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We have that Corresponds(coin,tag) iff tag, ™ =, tagy, for tag = (tag,,tagy) = (g", h")
and coin = (m,r,s). The validity of a coin is described by Correct(coin), which is satisfied
iff r = [[gms_ly”_l]p]q and Corresponds(coin,tag) for a tag tag in the Bank database.
Remark about robustness:

We see that the above method assures that cheating servers are caught, and that no tran-
script properties are lost when no complaint is filed. Also note that if R files a unjustified
complaint, then this will be established, since it will be found that no server cheated. Fi-
nally, note that no secret information of honest servers will be leaked to R if R receives
an invalid signature transcript. R has no motivation to complain on a good signature; this
results in early “unblinding”. Each time a threshold is used and opened, the misbehaving
processors are eliminated and the process starts afresh (to avoid leaking information) based
on new random choices. This may result in a delay of at most ¢; times. Note that the
method is applicable due to the probabilistic nature of the computation and the care in
opening erroneous results.

III.I Tracing

We present tracing methods based on the verification of an undeniable signature
(introduced by Chaum and van Antwerpen [15]). We use a (t,n) threshold scheme for
the verification of the undeniable signature, such that the scheme is sound, correct and
zero-knowledge (e.g., [16].)

There are three types of traces that can be performed: (1) given coin, find tag
such that Corresponds(coin,tag), (2) given a withdrawal session, and the corresponding
tag, compute a description of the corresponding coin, and (3) given a coin and a tag, verify
whether they correspond to each other.

We recall that the stored tag is of the form (tag,,tagy) = (g*, h*), for b = g%,
where z; is distributed over Bank and Ombudsman servers. The three different types of
tracing are performed as follows:

1. coin — tag.
Given a description (m,r,s), for each potential withdrawal session, we calculate
(traceq,tracey) = ([tagaTm_l]p,tagb). Using a protocol for verification of undeniable
signatures, we verify whether log,h = logiyqce tracey, which holds iff the coin corre-
sponds to the tag.

2. tag — coin.
A description (coing, coing) = (tag,”™, tagy) is calculated by a size-(;+1) quorum of z;
holders. This description is output. A certain coin, described by (m,r,s), corresponds
to the tag iff coing™ =, coiny,.

3. (coin,tag) — yes/no.
Given a description (m,r,s), and a tag, (tag,,tags), we calculate (trace,,tracey) =
([tagaTm_l]p, tagy). Using a protocol for verification of undeniable signatures, we verify
whether logyh = logsyace tracey, which iff the coin corresponds to the tag.



Chapter IV

Analysis

IV.A Analysis of the Magic Ink Scheme

We now prove that the demonstrated scheme satisfies the specification of Magic
Ink Signature schemes. More specifically, we prove that our magic ink generation of the
DSS signature satisfies requirement MI1-MI4: Correctness (Theorem MI1,) Zero- Knowledge
(Theorem MI2,) Anonymity (Theorem MI3,) and Quorum traceability (Theorem MI4.)

Theorem MI1:

The magic ink signature scheme achieves correctness, i.e., signatures can be correctly gen-
erated using a (3¢5, n) threshold scheme, by any size-(3t; + 1) quorum out of the n signature
servers.

Proof of Theorem MI1:
The signature protocol produces the correct result if all participants are honest, since then
we have that

o = [ + 2p),
p = [mal,

r= (71,1,
p=[ral,

s = [Ua_lﬁ_l]q

Therefore, s =, k3~ (u+ zp)a~t =, k37 (ma + zra)a™ =, k7 (m + ar) =, k7 H(m +
x[gk_lﬁ]p). Thus, the signature is valid.

The robustness of the signatures depends on our destructive robustness method for random
signatures (on top of the non-robust threshold DSS), and the soundness of the undeniable
signature verification protocol used therein: if the receiver obtains an incorrect signature
and complains, then, by the soundness of the undeniable signature verification protocol
used, any cheating signature server will be caught. (On the other hand, if the receiver
complains after having received a wvalid signature, then this fact will be established by the
signature servers. )

O

Let D denote the dishonest signature servers, and H the honest signature servers.
By assumption, we have that |D| = k, |[H| = 3k + 1. Let the attacker A consist of the
signature receiver R and D.

38
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Theorem MI2:

There exists a polynomial-time machine &, that given the public information (p, ¢, ¢,h,y),
the secret keys and strategies of A, and exactly one oracle call to an oracle O = (01, 07)
generating a DSS* signature for the public signature key y, generates a probability distri-
bution that is indistinguishable from the view of A during an execution of the magic ink
signature generating and tracing protocols. Moreover, the simulated tag that & produces

corresponds to the signature obtained from the oracle.

Proof of Theorem MI2:
The simulator S of the signature generation performs the following steps:

0.

4.

The simulator extracts the secret key z; of each server j € D that has at least an
e-chance of passing the zero-knowledge proof of knowledge during the identification
phase. Those that do not pass are not allowed to participate in the remaining protocol.

The simulator generates the messages from the honest servers to the dishonest servers:
it selects k;;, a;;, b;; and ¢;; uniformly at random from Z,, where these are the secret

share components from server 5;, ¢ € H to server S;, j € D. It sends (k;;, a;5, b, ¢i5)
to S; (supposedly from S;). Let (kji,aj;,bji,c;i) be the message sent from 5; to S;.
Knowing all the 3¢, 4+ 1 share components of k, a, b and ¢, sent from S; the honest
servers, the simulator calculates the share components that should be sent between
the serversin D. From all the components that were received by, or should be received

by, S;, the simulator calculates &, a;, b;, and ¢;, for j € D.

. The simulator performs the following;:

(a) The simulator computes the anticipated value of v;, j € D: 9; = [k;a; + bjl,-
Similarly, the anticipated values flj = [g“ﬂ]p are computed. The simulator selects
ts+ 1 values v;, ¢ € H uniformly at random from Z, — this defines o, the (2¢,,n)-
interpolation of the shares. The remaining values v;, ¢ € H are set so that @

remains the correct interpolation. The simulator makes a call to (O to obtain #,
and sets A = [fﬁ]p. Then, the values A;, i € H are set so that A is the (¢,,n)

interpolation of {A; }iep U{Ai}ien- The simulator publishes (v, A;) for 7 € H,
and receives (v;, A;) from j € D.

(b) Just as for the real protocol, A and v are computed by interpolation, and 7 =
[A”_l]p is calculated and sent to R.

. The simulator simulates the receiver R until it outputs (on the n private channels)

(p1,p1) -y (fon, pr) and publishes (My,..., M,), (Ry1,...R,), where M; supposedly
equals [g"] , and R; supposedly equals [27] . Given the 3t; + 1 pairs (u;, pi), ¢ € H,
the simulator can calculate (u;,p;), j € D by interpolation.

(a) If for any ¢ € H the received shares do not correspond to the public versions,
then 5; publishes the shares, and all servers in ‘H halt.

(b) The tag tag is computed as the interpolations (g*, h*).

(c¢) Set p/ = [,u?p_l]q. The simulator makes the second part of the oracle call to
receive o’ as the response from Oz(p'); 6 = [pF_la’]q is computed.

Recall now that the simulator knows z;, k;, and ¢;, uj;, p;, 7 € D. It now
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generates the anticipated share of o from S;: 6; = [k;(k; + zjp;) + ¢j],. 1t sets
the shares o, 1 € H so that o is the (3¢, n) interpolation of {&;},.p U {0i};en
(with the first 2¢; shares selected uniformly at random from Z,.) The simulator
outputs o; for server S5;, 1 € H, and receives o; from 5;, j € D. The servers
interpolate o from these shares, using (3¢5, n) interpolation, and send o to R.

5. The simulator waits.

6. If the receiver files a complaint then the following is performed: The simulator selects
values K;, B;, resp. C; so that K, 0, resp. 0 are the (5,n), (2ts,n), resp. (3ts,n)
interpolations of the antipated values for K;, B;, resp. C;, for j € D, and these
new values. Then, the simulator simulates S;, i € H to output (u;,p;, K;, B;, C;),
and simulates the zero-knowledge proofs of the protocol. The servers 5;, j € D are
simulated to output the corresponding values and to prove the correct exponentiations.
If any server fails or refuses, then the simulation halts.

a

Corollary M12 :
No set of fewer than ¢; + 1 servers can construct a valid Bank and Ombudsman signature,
given that the secret key shares are distributed using a (%5, n) secret sharing scheme.

Theorem MI3:

Assume that a set D of less than or equal to ¢; signature servers participate in the signature
generation protocol in which a signed message (m,r,s) and a tag tag is generated. If D,
without the help of the signature receiver, can, if later given (m,r, s), distinguish tag from
a pair (¢'1,¢") for random numbers (r1,7r2) with a non-negligible probability, then this
would contradict assumption 1.

Proof of Theorem MI3:

Assume we have a potential undeniable signature (m/,s’) w.r.t., (g, k), and want to learn
whether it is valid or not. Assume t; < t; servers can do so; since the secret key x; is
distributed using a (#;,n) secret sharing scheme, the servers do not have any information
about the secret key.

We construct a signature generation simulator S generating a signed message (m,r, s) and
a tag tag. S has the property that if (m/,s') is a valid undeniable signature w.r.t. (g,h),
then the view of the cheating servers is identical to that during a real signature generation,
and tag is the tag on (m,r,s); if (m/,s’) is not a valid undeniable signature w.r.t. (g,h),
then tag is a random number. Therefore, iff the dishonest servers, D, can correlate this
signature to its tag, then (m’,s') is a valid undeniable signature w.r.t. (g,h).

In our simulation, we control the signature receiver R, and simulate the behavior of the n—i;
honest signature servers H. Pick the secret z uniformly at random from Z,, by distributed
secret sharing — note that this is not a problem since # and 2, are unrelated. Let (m,r, s) be
an arbitrary, valid DSS signature using the secret key z. Select a tag tag = (tag,,tagy) such
that ([tagaT]p, [tagbm]p) = (m/,s"). The tag (tag,,tagy) is said to correspond to a signature
(m,r,s) iff tagy™ =, tag,”*, which for the above choice of the tag holds iff s’ =, m'"".
In other words, the tag corresponds to the coin iff s’ is an undeniable signature on m’
w.r.t. (g,h); if (m/,s) is a random pair w.r.t. (g,h), then tag is randomly distributed

w.r.t. (m,r,s). The latter holds since (tag,,tagy) = (m'" 1,5’m_1): if (m/, ") are randomly
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distributed and (m,r, s) are fixed, then (tag,,tagy) is also randomly distributed. We now
simulate the transcripts received by the servers in D as follows. This is similar to the the
signature generation protocol (Theorem MI2), but here we control R. If (m/, s) is valid, tag
will correspond to the signature. If not, it will be random and independent of the signature.

For denotational simplicity, we consider the worst case, t; = t,.

0.

A secret key z is generated as for the real protocol. The servers in D are simulated,
and the messages to these constructed, so that h is the (#;,n) - interpolation of the
corresponding public shares (as done in the proof of Theorem MI2.) If any server
fails, then they are excluded. (We note that # and a; are independent.)

. The simulator generates the messages from the honest servers to the dishonest servers:

it selects Eij, a;;, b;; and ¢;; uniformly at random from Z,, where these are the secret

share components from server 5;, ¢ € H to server S;, j € D. It sends (k;;, a;5, b, ¢i5)
to 9 (supposedly from S;). Let (kj;,aj;,bj;,c;;) be the message sent from §; to ;.
Knowing all the 3¢, 4+ 1 share components of k, a, b and ¢, sent from S; the honest
servers, the simulator calculates the share components that should be sent between
the serversin D. From all the components that were received by, or should be received

by, S;, the simulator calculates &, a;, b;, and ¢;, for j € D.

. The simulator performs the following;:

(a) The simulator computes the anticipated value of v;, j € D: 9; = [kja; + bj]q.
Similarly, the anticipated values flj = [g“ﬂ]p are computed. The simulator selects
ts+ 1 values v;, ¢ € H uniformly at random from Z, — this defines o, the (2¢,,n)-
interpolation of the shares. The remaining values v;, ¢ € H are set so that @
remains the correct interpolation. The simulator makes a call to (O to obtain #,
and sets A = [fﬁ]p. Then, the values A;, i € H are set so that A is the (¢,,n)
interpolation of {4; }iep U{Ai},ep The simulator publishes (v, A;) for 7 € |,
and receives (v;, A;) from j € D.

(b) Just as for the real protocol, A and v are computed by interpolation, and 7 =
[A”_l]p is calculated and sent to R.

. The simulator generates random shares p;,p; €, Z,, (M;,R;) = (g",h"7), for

J € D. It then selects p;,p; €, Z,, and calculates (M;, R;), © € H, such that the
(t5, n)-interpolation of {Mj}jeD U {M.;};cy equals tag,, and the (,,n)-interpolation

of {R;},cp U{Ri},cy equals tagy.

. The simulator simulates the dishonest servers; the servers in ‘H do not complain that

their shares (p;, p;) do not correspond to (M;, R;). If any server in D would complain,
then their shares are inspected, and the honest servers halt.

The tag is computed as in the real protocol. By assumption 3, we have that tag will
correspond to the signed message.

The servers generate some response and send it to R (and R is sent the signature
s on m for r, which does not need to involve the dishonest servers, whose output is
ignored.)

If the dishonest servers output that the given signed message (m,r,s) corresponds to the

tag tag, then output “valid signature”, otherwise output “invalid signature”. O
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Theorem MI4:

The magic ink signature scheme achieves quorum traceability, i.e., valid signatures can
always be traced by any size-(f; + 1) quorum out of the n servers. Here, traced means the
following: Given a coin, the tag such that Corresponds(coin,tag) can be computed; given
tag, the coin such that Corresponds(coin,tag) can be computed; and given a coin and a
tag, it can be established whether Corresponds(coin,tag). In other words, no coalition of
less than ¢s + 1 signature servers, interacting with honest servers a polynomial number of
times in the signing and tracing protocols, can produce a valid signature that will not be
traced to the tag of one of the signing sessions by any group containing at least ¢; + 1 honest
servers in the tracing protocol. Furthermore, we want signatures generated by an attacker
who compromises the secret key of the signers (or forces the signers to sign using a protocol
different from that specified by these) always to be possible to identify by any size-t; + 1
quorum of signers.

Lemma MI4a:

Any valid signature (m,r,s) produced by a coalition of less than or equal to ts dishonest
servers interacting in a polynomial number of signing and tracing protocols, will correspond
to one of the tags for the signing protocols they participated in.

Proof of Lemma MI4a:

By assumption 2, DSS* is existentially unforgeable, and by Corollary MI2, t; servers are
not able to generate valid signatures without interaction with other servers. Consider the
simulation & in the proof of Theorem MI2. Let y be the public key for DSS*. We produce
the correct view for the dishonest servers j € D of the corresponding keys: We simulate
server j € D until it announces y;, and we set y;, 7 € H so that y is the (¢, n) interpolation
of . In more detail, we simulate the transcript received by j € D in the distributed secret
sharing of y. This is done the same way as in the proof of Theorem MI2. When an oracle call
later is made in the simulation, assume that our supposed oracle makes the corresponding
call to a DSS™ signer with key y. By Theorem MI2, and assumption 3, the tags generated by
the simulator will correspond to the signatures obtained. However, the transcripts received
by the signature receiver and the dishonest servers in this (variation of the) simulation
will be indistinguishable from transcripts received by them in the real protocol. If a new
(and valid) signature is not in the same equivalence class as a signature seen by the DSS*
signer (i.e., that the signature does not correspond to the same tag as any signature seen by
DSS*), then this must also be the case for the simulation (since the simulated transcripts
are identically distributed to the transcripts of the real protocol). This would contradict
assumption 3. O

Lemma MI4b:

Assume that Corresponds(coin,tag). If coin is the input to the tracing protocol (with
tracing direction coin to tag), and at least ¢, + 1 honest servers participate in this protocol,
then the output of the protocol will be tag.

Proof of Lemma MI4b:

According to the protocol description, we have that (trace,,trace;) = (tagarm_l,tagb).
Since z; is shared using a (¢;, n) threshold scheme, ¢, + 1 servers will be able to distributively
and robustly verify whether log,h (which by definition equals z;) equals [0g¢rqee, tracey, by
the use of a sound and correct zero-knowledge protocol for verifying undeniable signatures.
Iff this holds, the following holds: trace,” =, tracey,.By the format of (tag,,tagy), this is
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the same as saying urm=1 =, p, i.e., Corresponds(coin, tag) for coin = (m,r, s). Therefore,

it will only be satisfied for a tag corresponding to the coin of the input, and this tag will be
output. O

Lemma MI4ec:

Assume that Corresponds(coin,tag). If tag is the input to the tracing protocol (with
tracing direction tag to coin), and at least ¢, + 1 honest servers participate in this protocol,
then the output of the protocol will be coin.

Proof of Lemma Ml4c:

According to the protocol description, we have that (coing, coiny) = (tag,”,tags). Since
is shared using a (#;,n) threshold scheme, ¢, + 1 servers will be able to distributively and
robustly compute this pair, by proving that they perform the correct exponentiation. Iff
coinarm_1 =, coiny holds, the following holds: purm™' =, p, i.e., Corresponds(coin,tag)
for a matched coin coin = (m,r,s). Therefore, the coin corresponding to the tag that
constitutes the public input to the protocol (and only such a coin) will yield equivalence,
and therefore, the protocol output (coin,, coiny) is a description of this coin. O

Lemma MI4d:

If (coin,tag)is the input to the tracing protocol (for comparison tracing), and at least ¢, +1
honest servers participate in this protocol, then the output of the protocol will be yes iff
Corresponds(coin,tag).

The proof of Lemma MI4d follows from the proof of Lemma MI4b, since in the
comparison tracing, we only limit the number of tags compared in the coin-to-tag tracing.

Lemma MI4e:
If and only if there is no tag tag for a valid coin coin so that Corresponds(coin,tag), then
cotn must have been obtained through a bank robbery.

Proof of Lemma MI4e:

By Lemma MI4a, we have that for each time the standard protocol for generating magic ink
signatures is used, a tag that corresponds to the coin being authenticated will be produced.
Therefore, if there is no tag that corresponds to a valid coin, this coin must have been
produced using a protocol other than the standard protocol (whether coerced or by an
insider attack); this is what we call a bank robbery. O

Proof of Theorem MI4:

By Lemma MI4a, we have that for each coin produced using the standard magic ink signa-
ture protocol, the corresponding tag will be generated. By Lemma MI4b-MI4d, a quorum
of t; + 1 honest servers will be able to trace such a coin to such a tag; trace such a tag to
such a coin, or verify whether such a coin corresponds to such a tag. If there is no tag that
corresponds to a given coin, then, by Lemma MI4e, we have that this coin must have been
obtained in a bank robbery attack. O
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IV.B Analysis of the E-Money System

We now prove that the suggested e-money scheme, using the previously intro-
duced primitive for distributed magic ink signatures, satisfies its specification. More specif-
ically, we prove that our e-money scheme satisfies requirement EM1-EM9: Unforgeability
(Theorem EM1,) Impersonation safety (Theorem EM?2,) Overspending detection (Theorem
EM3,) Overspending robustness (Theorem EM4,) Traceability (Theorem EMS5,) Revocabil-
ity (Theorem EM6,) Anonymity (Theorem EMT7,) Framing-freeness (Theorem EMS,) and
Refundability (Theorem EMO.)

Theorem EM1:

The system achieves unforgeability, i.e., a set of users, shops, and Bank and Ombudsman
servers, not including a quorum of the latter, are not able to perform payments for a
value exceeding V, which are later accepted by an honest Bank as valid, after engaging in
withdrawal protocols withdrawing funds for a value of V.

Lemma EM1la:
For each spendable coin coin, the Bank cooperated to produce one signature, and has a tag
tag such that Corresponds(coin,tag) holds.

According to the requirements (see section III.B), the Ombudsman controls at
most ¢, signing servers, so according to Corollary MI2 we have that at least one Bank
server must be involved in the transaction. The correctness of Lemma EMla now follows
from Lemma MI4a (the tag corresponding to the coin produced will be generated for each
withdrawal session.)

Lemma EM1b:

We let an attacker not containing the withdrawer of a given properly withdrawn coin ask
for a polynomial number of signatures using the secret key of the coin to be generated (in
an adaptive chosen message manner for messages ¢;.) It is not possible for this attacker
afterwards to produce a valid signature a using the same key on a message ¢ not previously
signed.

Proof of Lemma EM1b:

Assume the contrary. This means that, given the public key yco:, of the coin, it is possible
to produce a message-signature pair (¢, @) not earlier seen after seeing a polynomial number
of such correct pairs. This is impossible since the coin signature scheme, (5, V'), is assumed
to be existentially unforgeable. O

Lemma EMlc:

For each deposited coin, the Bank will find out its corresponding public key ycos and the
value of the spending, and will know the total value of all the spendings of each coin that
has been deposited.

Proof of Lemma EMlc:

When a coin is spent and deposited, its public key yc.s, must be sent, by the specification
of the protocol. The correctness of the public key will be authenticated by the combined
Ombudsman and Bank signature sc,;, on it. The corresponding secret key, ¢ o, must for
each spending be used to produce a signature a on the challenge ¢ of the spending. Only
coins of this format can be accepted by the Bank for credit when deposited. According to
the book-keeping procedure given in section II.E.3, we have that for each deposited coin,
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indexed either by (ycvin, Scoin) Or an appropriately chosen function thereof, the Bank will
know the total value of the spendings. O

Lemma EM1d:
If a coin coin gets overspent, then the Bank and the Ombudsman will be able to compute
the identity of the party that identified itself during the withdrawal of coun.

Proof of Lemma EM1d:

For each coin cotn, the Bank and the Ombudsman will be able to compute the tag tag,
such that C'orresponds(coin,tag) by using the tracing protocol (see Theorem MI4). If the
coin was withdrawn using the normal withdrawal protocol (as opposed to a bank robbery),
then the Bank will have a record (id,tag) in its database of withdrawn coins, such that id
is the identity of the participant who proved his identity to the Bank during the withdrawal
protocol. O

Proof of Theorem EM1:

By Lemma EMla, at least one honest Bank server must be involved in the generation of
the signature on the coin public key ycoin, that is a part of the deposited coin. By Lemma
EM1b, the payer needs to generate a new signature w.r.t the public key 9y, for each new
payment and deposit transcript. According to Lemma EMI1c, the Bank can tell payment
transcripts of different coins from each other by (ycvin, Scoin), Or an appropriate function
thereof, and will know the total sum spent by its owner for each coin. Therefore, it is not
possible to overspend coins without being detected. According to Lemma EM1d, it will be
possible for the Bank and the Ombudsman to establish the identity of the participant who
identified himself during the withdrawal of the overspent coin (unless the coin was obtained
through a bank robbery, in which case this will be established.) Therefore, the scheme
achieves unforgeability. O

Theorem EM2:

The system achieves impersonation safety, i.e., if there is no attacker consisting of a quorum
of Bank and Ombudsman servers, or if transactions can be legally challenged by taking the
case to a judge, then no coalition of users, shops, Bank and Ombudsman servers can succeed
in charging an honest user more than what his withdrawals total.

Proof of Theorem EM2:

Since the identification scheme used is sound, it will not be possible for any set of par-
ticipants not including the withdrawer «w € U to produce a valid withdrawal request from
u. Since all communication is either authenticated or on dedicated channels, it will not be
possible for any set of Bank and Ombudsman servers to substitute messages sent between u
and the signing servers, without this being detected. Therefore, unless the attacker controls
a quorum of Bank and Ombudsman servers, it will not be possible for him to perform a
transaction after which he has a pair (2¢oin, Scoin) constituting a spendable coin coin, and
for which (u,tag) is recorded by the Bank, such that Corresponds(coin,tag). The only
time when any function of z¢;, (other than the value yco.,) is revealed by u is during
the payment protocol, when u signs a challenge ¢ using the signature protocol associated
with (2coin, Ycoin)- This scheme is by assumption existentially unforgeable, and so, does
not allow an attacker to produce a valid signature not generated by u after having received
a polynomial number of signatures on chosen messages. Therefore, for each valid payment
transcript (Ycoin, SCoin, €, @), corresponding to a tag linked to u, the signature @ on ¢ must
have been produced by u, or a participant cooperating with w. O
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Note: If the user sends a signed acknowledgement of having received the withdrawn coin
after having obtained a valid pair (2coin, Scoin ), but not before that, and only u can produce
this signature, then if the Bank does not have this signature on a withdrawal, then the Bank
does not have a complete withdrawal view (making any claims of improper use invalid,)
which would be recognized by a third party, such as a judge.

Theorem EM3:

The system achieves overspending detection, i.e., if a set A of attackers performs an over-
spending attack in which a value V is withdrawn and a value V4 > V is spent, then a
quorum of the Bank and Ombudsman servers will be able to establish (a) the sum of the
overspending, i.e., V1 — V, and (b) the identity of at least one member of A.

Proof of Theorem EMS3:

The Bank will not accept a deposit unless it is of the proper format, (ycoin, Scoin, ¢, @),
where scoi, = sB/O(ycom), and @ = s;._ (c). Here, the former is the Bank/Ombudsman
signature on Yo, and the latter the signature, using the secret key corresponding to ycoin,
on ¢. Since the Bank/Ombudsman signature scheme by assumption is existentially unforge-
able, we have that if the Bank receives such a deposit for a public key ycoin, the same public
key must have been previously signed by a Bank/Ombudsman quorum. The value of the
spending, which will be associated with (ycoin, Scoin), Or an appropriate function thereof,
will be obvious to the Bank given the valid deposit transcript, since the challenge specifies
this amount and the coin signature scheme is assumed to be existentially unforgeable, too.
Therefore, if a coin is overspent, the Bank will know this, as soon as a value exceeding
the legal value has been deposited. Furthermore, the Bank will be able to lower-bound the
amount of the overspending at this time; the precise value of the overspending will be known
at the end of the expiration time (for deposits) of the coin. By Theorem MI4, the Bank
will be able to establish the tag corresponding to (ycein, SCoin, ¢, @) by cooperation with
the Ombudsman. Each such tag is associated with the identity of the party who identified
himself during the corresponding withdrawal protocol. O

Theorem EM4:

The system achieves overspending robustness, i.e., if a set A4y of attackers perform an
overspending attack in which a value V is withdrawn and a value V4 > V is spent, then
a set Ay of users, shops, Bank and Ombudsman servers, disjoint from Ay, cannot make
an honest quorum of Bank and Ombudsman servers running the overspending detection
protocol output a sum of overspendings V, —V > V; — V and only identities of participants

in ./41.

Proof of Theorem EM4:

For each time the user spends a coin, he will have to give a signature on a challenge using
the secret key of the coin. As long as only a polynomial number of signatures are given, we
have that, according to the definition of an existentially unforgeable signature scheme, that
it will not enable an adversary to sign a new message. O
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Theorem EMS5:

The system achieves traceability, i.e., any Bank and Ombudsman quorum can, regardless of
the actual withdrawal protocol used, and regardless of whether an “illegal untraceability”
attack is executed, perform the following actions:

1. Given a tag € T, calculate coin € C, such that Corresponds(tag, coin).
2. Given a coin € C, calculate tag € 7, such that Corresponds(tag, coin).
3. Given a tag € 7 and a coin € C, establish whether Corresponds(tag, coin).

All of these actions are performed in a way that does not give any set of participants a non-
negligible advantage (apart from the advantage gained by knowing the result of the above
calculation) in establishing whether Corresponds(tag’, coin’) for any tag’ € 7, coin’ € C,
but (coin’,tag’) # (coin,tag).

This follows automatically from Theorem MI3 (anonymity), Theorem MI4 (quorum trace-
ability,) and the fact that for each withdrawn coin, the Bank stores the tag. If there for a
given coin is no tag such that Corresponds(coin,tag), then coin must have been obtained
in a bank robbery attack. This fact will be established by the use of the tracing protocol.

Theorem EM6:
The system achieves revocability, i.e., any traced coin can be permanently resp. temporarily
made unspendable by blacklisting resp. freezing.

Proof of Theorem EM6:

Since, by Theorem EMSB5, any coin can be traced at any time after its withdrawal, it will be
possible for the Bank to construct a list of coins (or rather, their corresponding public keys
YCoin, OF coin invariants /., ) not to be accepted (whether temporarily or permanently) and
distribute this (in an authenticated form) to all the shops. Similarly, it will be possible for
the Bank to remove coins from this list (corresponding to thawing of funds) by broadcasting
a signed list of coins on the black list to be taken off the latter (or just an updated version
of the black list, not containing descriptions of the thawed coins.) O

Theorem EMT:

The system achieves anonymity, i.e., the probability for any coalition of participants not
containing a quorum of Bank and Ombudsman servers to determine for any particular pair
(tag,coin) € T x C whether Corresponds(tag,coin), is not non-negligibly better than that
of a guess, uniformly at random, given all the available pairs of descriptions of tag’ € T
and coin’ € C and all the already computed relations R available.

This follows from Theorem MI3, anonymity for the magic ink signature scheme, and the
fact that no other information linking withdrawals to identities or sessions is calculated in
the payment scheme.

Theorem EMS:

The system achieves framing-freeness, i.e., it is not possible for a set A of dishonest users,
shops, Bank and Ombudsman servers, not including any member of a set U to produce
a set of transcripts, that, if a tracing is performed with these as input, the output would
identify a member of If with non-negligible probability if (a) the withdrawer has a public key
associated with him, and he signs withdrawals, or (b) there is no quorum of Ombudsman
and dishonest Bank servers.
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Whereas the requirement 'impersonation safety’ is not implying or implied by the require-
ment framing-freeness’, our proof that the system satisfies impersonation safety also proves
that it satisfies framing-freeness. We therefore refer to the proof of Theorem EM2.

Theorem EM9:

The system achieves refundability, i.e., if A, a set of users, shops, Bank and Ombudsman
servers, not including any member of a set ¢/, makes only a value V; < V, be accepted
as valid by an honest set of Bank servers, after members of U spend funds with a value
Vo <V from the said withdrawals, then members of U can prove that the attack took place,
resulting in the identification of at least one of the members of A.

Proof of Theorem EM9:

If a user u € U does not obtain a valid signature s on the public key yoyi, during a with-
drawal, then he can prove this by presenting the session keys to the Bank and Ombudsman
servers, who will then (using the method for destructive robustness) be able to identify the
cheater. We refer to the proof of correctness (Theorem MI1.)

If a user u € U has a valid pair (2coin, SCoin ), and is blocked from spending this coin to its
full value, then he can complain to a Judge. Since the coin signature scheme is assumed
to be existentially unforgeable, and only u can know (Zcoin, Scoin), We see that the Bank
will not be able to produce valid payment transcripts of the coin to a value exceeding that
spent by the user (see the proof of Theorem EM2.) Therefore, the Bank will be identified
as a cheater if it blocks a user from spending a coin to its full amount.

After a bank robbery, the Bank and the Ombudsman will in a robust fashion construct a
list of descriptions of all properly withdrawn coins (but only these). By the robustness of
this protocol, the Bank can not be misled by a cheating Ombudsman not to accept coins
that are valid, or accept them to a lesser value. Thus, if a set of participants blocks some
valid payments from being accepted, the identity of at least one such cheater will be known.
O

Remark: It is clear that the shop cannot change the semantics of a coin, or it would be
able to change the challenge in the basic system, thus obtaining two valid coins (or more)
to deposit, instead of one. Since the extensions are only based on the semantics (which is
a convention how to set the challenge, agreed upon by all participants) the security of the
extended system is unchanged.
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