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Abstract

We present a mix network that achieves efficient integration
of public-key and symmetric-key operations. This hybrid
mix network is capable of natural processing of arbitrarily
long input elements, and is fast in both practical and asymp-
totic senses. While the overhead in the size of input elements
is linear in the number of mix servers, it is quite small in
practice. In contrast to previous hybrid constructions, ours
has optimal robustness, that is, robustness against any mi-
nority coalition of malicious servers.

1 Introduction

A mix network is a cryptographic primitive that takes as
input a sequence of ciphertexts and outputs the correspond-
ing plaintexts in a random order. The main security goal of
this procedure is to hide the correspondence between inputs
and outputs from all participants (apart, of course, from
the fact that players will recognize their own contributions).
This property is referred to in mix network constructions
as privacy. A certain degree of privacy can in principle be
obtained by giving the list of input elements to a trusted
server, who then performs some operation (such as decryp-
tion) and randomly permutes the results before outputting
them. Naturally, however, in this procedure, the server in
question knows the exact relationship between input and
output elements. Most mix server contructions aim at a
stronger form of privacy by distributing the process among
a collection of servers. In this model, full privacy is achieved
provided that no quorum of servers collude with one another.
In most constructions a quorum consists of the majority of
participating servers, but a variety of threshold structures
are possible. Given no quorum of faulty or colluding servers,
two other properties desirable in a mix network are correct-
ness and robustness. A mix network is said to be robust if
it produces output irrespective of server faults or failures.
Correctness in a mix network is the property that the set of
outputs from the mix network consists of plaintexts corre-
sponding exactly to the set of ciphertext inputs.

Introduced by Chaum [3] as a primitive for privacy en-
hancement, mix networks have proven a powerful crypto-

graphic tool for a diverse range of applications. One of the
first such applications, for instance, is that of originator-
anonymous e-mail [3, 28]. The idea here is for users to en-
crypt their e-mail messages, and then apply a mix network
to the resulting batch of ciphertexts. The output of this
mixing operation is the set of original plaintext e-mail mes-
sages. The privacy property of the mix network ensures that
no one can determine which plaintext e-mail message corre-
sponds to which ciphertext. Thus, even if it is known which
user posted which ciphertext, the mix network in this ap-
plication enables plaintext e-mail messages to be rendered
anonymous. The literature includes a broad range of re-
lated applications of mix networks, including anonymized
Web browsing [9] and secure elections [13, 27, 30], as well
as seemingly unrelated applications such as anonymous pay-
ment systems [19] and general secure multiparty computa-
tion [18]. In this paper, we present a mix network tailored
for applications that require very high throughputs of long
messages, and where robustness is of importance. Such ap-
plications include private browsing and streaming, e-mail
delivery, and privacy-preserving applications relating to ad-
vertisements [21].

1.1 Related work

We present a robust mix network that takes input cipher-
texts of arbitrary (but equal) length and outputs the cor-
responding plaintexts. The mix network introduced by
Chaum [3] and related proposals such as those in [29, 31]
handle long inputs in a natural and efficient way, due to their
intensive use of both public-key and symmetric-key encryp-
tion. The principle used in these schemes is that of iterated
encryption. In a first step, the input plaintext is encrypted
using the public key of the last mix server. Then, in a second
step, the resulting ciphertext is encrypted using the public
key of the second to last mix server. This is repeated until
finally an encryption of the previous ciphertext, using the
first mix server’s public key is performed. These encryption
steps are performed by the player who wishes to have the
message (the plaintext above) output by the mix network.
All of the encryption steps make use of probabilistic en-
cryption [12], thereby preventing an attacker from matching
input and outputs by applying the encryption function to
outputs and matching the results against inputs. The final
ciphertext that is submitted to the mix network, along with
other ciphertexts generated in the same manner, potentially
by different users. After all ciphertexts have been received,
they are processed by the first mix server, who decrypts
them all (using his secret key) and permutes the results be-



fore handing these to the second server, who in turn decrypts
and permutes, etc. Finally, the last mix server decrypts, per-
mutes, and outputs what will correspond to all the initial
plaintexts, assuming everything went well. By straightfor-
ward enveloping techniques, i.e., combination of public-key
and symmetric-key encryption, it is easy to see how plain-
texts of arbitary length can be efficiently accommodated in
this construction. We refer to this basic Chaumian mix net-
work and other mix networks similarly amenable to such
conmbination of public-key and symmetric-key techniques
as hybrid mix networks.

What could – most notably – go wrong in the Chaumian
mix network is that one of the mix servers replaces one or
more partially decrypted ciphertexts. In a robust scheme,
such a replacement attempt would not go unnoticed, and
the remaining servers (all but those who were caught cheat-
ing) would replace the cheaters and re-execute the mixing
operation. (This will be explained in more detail later.)

Subsequently proposed mix network schemes,
known as public-key mixes, have focused on achieving ro-
bustness, typically through heavy reliance on public-key op-
erations [1, 2, 7, 15, 16, 17, 24, 25]. At their best, these pro-
posals enable robustness against any minority coalition of
corrupt servers. Their drawback is that they are in general
substantially less efficient than their hybrid predecessors.
Indeed, on long inputs, such mix networks are very slow, re-
quiring that input elements be divided into segments, each
one of which is processed as an individual asymmetric ci-
phertext.

The approaches used to achieve robustness in public-key
based mixes relate to so-called zero-knowledge proofs. Such
proof allows a player to convince one or more other play-
ers that some relation between two or more elements holds,
but without leaking information about the elements. In par-
ticular, it is possible to prove that a set of input elements
correspond to a set of output elements, and that their rela-
tion is that of decryption (using the secret key corresponding
to a particular public key) and permutation. This would be
done without leaking either the secret key or the secret per-
mutation. Note that this is crucial in a mix network. It is
also of importance – to allow the replacement of cheaters –
to be able to perform the desired actions of one mix server
(that has been found to cheat) by collaboration between suf-
ficiently many honest mix servers. In other words, the com-
putation should be possible to distribute, while maintaining
all desired security and privacy properties.

The difficulty in producing a robust hybrid mix lies in
that one must combine the use of symmetric ciphers with
distributed computation and proofs of correctness. Due to
their structure, symmetric-key algorithms are inherently dif-
ficult to distribute, and entirely impractical to perform zero-
knowledge proofs on. It is therefore a challenge to construct
an efficient and secure mix protocol that is inherently dis-
tributed. Recent work by Ohkubo and Abe [26] demon-
strates that it is possible to construct a mix network with
both the robustness property and efficient use of symmetric-
key encryption, using duplication of computational ability
instead of distribution of the same. Their scheme, as a result
of taking this approach, only achieves robustness against
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corrupt servers out of a total of n. This is so since it is based
on the architecture suggested in [7], in which each layer of
decryption is performed by a quorum of participants, none
of which – due to requirements of privacy – may participate
in any other layer.

1.2 Our work

In this paper, we describe a hybrid mix network with opti-
mal robustness, i.e., robustness against any coalition of fewer
than n/2 servers. Our notion of robustness, however, is
somewhat weaker than the standard notion: In our scheme
it is possible for a corrupt server colluding with a corrupt
user to modify the ciphertext element derived from the ci-
phertext of the corrupt user during one stage of the mix
process. On the other hand, it is not possible for the collud-
ing parties to modify elements derived from honest users;
nor is it possible to modify any element after learning any
portion of the output of the mix network. Thus, this beauty
flaw amounts merely to making it possible for the adversary
to “delay making up his mind”, and it does not allow her
to alter the distribution of the output, nor does it reduce
the privacy of the scheme. For most practical purposes, this
weaker notion of robustness is therefore benign.

Our scheme accepts ciphertexts derived from plaintexts
of any polynomial size. The (additive) overhead associated
with encryption of plaintexts is proportional to the number
of encryption steps, equaling, in turn, the number of active
mix servers, namely n. In practical terms, this expansion
is marginal, and in particular for long inputs, which is the
type of inputs on which hybrid encryption in general is well
suited. Our scheme has per-server asymptotic worst-case
and expected computational costs of O(Nn2) and O(Nn)
modular exponentiations respectively, where N is the num-
ber of input elements to the mix, and n is the total number of
mix servers. (We disregard the cost of symmetric-key opera-
tions, which are generally small by comparison.) Our worst-
case asymptotic cost is the same as the expected asymptotic
cost of [26] when the costs are considered as functions of the
number of mix servers the scheme is resilient against. Our
expected costs – the costs incurred in the absence of an ac-
tive adversary – are lower. Comparing our construction to
some non-hybrid schemes, we see that it is not as efficient as
some of these. In particular, it is not as efficient as the con-
struction of Jakobsson [16], or the repaired version of this
protocol by Mitomo and Kurosawa [24], whose asymptotic
per-server costs in terms of the number of modular exponen-
tiations are O(N) in the expected and O(Nn) in the worst
case. For large N , the associated constants are quite low.1

This cost analysis, however, assumes input elements short
enough to be represented as a single ciphertext. Long in-
put elements thus require either a näıve expansion of the
modulus size or decomposition into many ciphertexts, with
modifications made to the mix architecture (no techniques
for which are actually described in the literature). Thus for
long input elements, it may be expected that the concrete
costs for the mix network proposed here are much lower.

As a first approach to building a hybrid mix, one might
try to introduce robustness into the basic Chaum mix by
appending a checksum to each layer of a given ciphertext
input. Thus, when the ith server decrypts a layer for some
message, it reveals a checksum, for which it can verify the
correctness. If the i − 1st server introduces näıve (or unin-
tentional) errors into its output, these are likely to be de-
tected. In particular, the (i−1)st server does not the check-
sum in the ciphertext being passed to the ith server, so it
is unlikely to be able to determine a way of, e.g., flipping
a few bits without being detected. On the other hand, the

1The assessment of these costs in [7, 24] are in terms of the num-
ber of modular arithmetic operations of any kind, including modular
additions, and thus somewhat misleading.



ith server can simply replace a ciphertext in its output with
an entirely new one, computing each layer and the associ-
ated checksums from scratch. Thus, this method of adding
checksums does not in itself provide robustness.

In our construction, however, we employ a related idea.
Instead of a checksum, we append a MAC to each layer in the
mix. With this approach, we change the task of the attacker:
now, in order to alter a message, the attacker must alter the
corresponding MAC. To ensure robustness, our goal now
resolves to that of protecting the MAC keys themselves. The
central in our construction is to protect MAC keys by means
of public-key-based encryption. In particular, the MACing
key ki, used by server i to check the integrity of a given
input, is encrypted in such a way that it is only available to
server i itself, and not to any of the other servers. Hence,
none of the previous servers can determine ki or alter or
replace ciphertexts so as to deceive server i.

This integrity protection on MAC keys is accomplished
by proving that the product of MAC keys input to a given
server is correct (or, more precisely, a public-key encryption
thereof). Each server processes these encrypted MAC keys
to extract the keys for its own use and to create new encryp-
tions (of related MAC keys) for the next server. Note that if
we prove that the correct relation holds between the prod-
uct of two sets of MAC keys, such a proof is independent
of the permutation applied to these keys and the associated
messages. This simplifies the proof considerably, and is one
of the critical elements enabling us to build an efficient mix
construction.

It is important to note that is is possible for an attacker
with control of one or more servers to modify a set of en-
crypted MAC keys so long as the product remains correct.
Such an attacker can then replace a number of ciphertexts
and compute correct MACs for these spurious ciphertexts.
In order to cause the product of the full set of MAC keys
to be correct, however, this attacker must introduce at least
one MAC key that the attacker cannot feasibly choose itself.
The attacker will be able to learn a ciphertext on this MAC
key but, as we prove, cannot learn the key itself. In con-
sequence, the attacker will with overwhelming probability
produce an input to an honest server containing an incor-
rect MAC, and will thus be detected.

In presenting our new hybrid mix construction, we intro-
duce and employ a few techniques of potential independent
value. Two of these are sketched above: First, the use of
MACs for purposes of correctness checks in multi-party pro-
tocols; second, the careful separation of the ability to verify
a MAC and to perform decryption (which is important in
order to allow one to be performed by a quorum, without
allowing the other to also be performed as a result). We
employ a third important technique in the last stage of the
mix. In particular, we simulate the last server in the mix by
means of distributed execution involving a quorum of par-
ticipating mix servers. The purpose of this last step is to
guarantee that no errors are introduced into the final output.

Organization

We begin in section 2 by defining the desired properties of
our scheme. In section 3, we describe the setup for our
scheme and the underlying cryptographic primitives. We
present our mix network construction and related claims in
section 4. Due to lack of space, we omit a detailed security
analysis from the body of this extended abstract, and refer

to the extended version on the authors’ webpages [14, 20]
for proofs and proof sketches.

2 Definitions

As for previous mix networks, we have two types of par-
ticipants: The users U = {Ui}Ni=1 (where we assume for
simplicity that Ui posts a unique input ciphertext Ii to the
mix); and the servers S = {Si}ni=1, who compute an output
vector O from the input vector I. The sets U and S may
overlap. We consider security against a static adversary A
that controls some proper subset Û of U , and also a minority
subset of S, i.e., a subset of size at most t, denoted by Ŝ.
All participants can be modelled by polynomial-time Turing
Machines.

While we keep with the spirit of previous work in terms of
our definitions for privacy and robustness, we modify these

slightly to allow for active involvement by corrupt users Û
in the mix protocol.

Let I be the set of inputs provided by U , let Î be that
portion provided by the corrupt users Û , and let I′ be the

set provided by honest users, i.e., I ′ = I − Î. Let O be the
set of messages output from the mix network. (Note that
there may be fewer outputs than inputs, as invalid inputs
are eventually eliminated by the servers.)

We begin with the following, straightforward definition
of correct decryption by a server Si. Here, Dk denotes sym-
metric decryption under key k.

Definition 1 We say that a triple C ′ = (y′, c′, µ′) repre-
sents a correct decryption of triple C = (y, c, µ) by server

Si if c′ = Dk′ [c], where k′ = yβi , y′ = yαi , and µ′ equals
MACyγi [c′, I] for a nonce I. Here, αi, βi, and γi are private
keys of server Si.

This definition means that Si has followed the decryp-
tion procedure in the protocol correctly for ciphertext C,
as shown below. We extend the definition naturally to de-
cryption by multiple servers. In other words, if C represents
input to Si and C′ represents output by Sj for some j ≥ i,
we say that C′ represents a correct decryption of C if it
results in the obvious way from C after a chain of correct
decryptions. We also describe a group of ciphertext outputs
from Sj as representing a correct decryption of a group of
ciphertext inputs to Si.

Also important to our analysis is the somewhat unortho-
dox notion of correct rendering, defined as follows.

Definition 2 We say that a triple C ′ = (y′, c′, µ′) repre-
sents a correct rendering of triple C = (y, c, µ) by server
Si if y′ = yαi , and µ′ equals MACyγi [c′, I], for a nonce I,
and where αi and γi are private keys of server Si as defined
above.

It is important to note how this definition is unusual.
In the straightforward mix server execution, the pair (c′, µ′)
represents a correct decryption of c under the decryption key
yβi , where βi is a private key of server Si. Our term “ren-
dering”, however, implies that there may be a substitution
for the straightforwardly decrypted value if accompanied by
a correct MAC. Indeed, as stated before, a server in our pro-
tocol can collaborate with the user who posted an input to
change it in mid-execution.



Let Ii be a set of input messages to a given mix server
Si. Let Oi represent the output of server Si. (Note that
for i ≤ n, the set Oi will contain ciphertexts, in contrast
to O, which comprises plaintexts.) Let us extend the term
“corresponds” in the obvious manner to these sets.

Definition 3 (Correctness) We say that the output set
Oi of server Si is correct with respect to Ii if the following
hold:
(a) Let I′i ⊂ Ii be the full set of inputs containing correct
decryptions of elements in I ′. Then there is a set O′

i ⊂ Oi

that contains a unique correct decryption of every element
in I′i.
(b) Let Îi represent the set of remaining inputs. There is

a set Ôi that contains a unique correct rendering of every
element in this valid input set.
(c) There are no other additional elements in Oi.

We extend this definition in the obvious manner to re-
spective input and output sets I and O to define correct out-
put for the full mix network. In particular, correct output
includes unique correct decryptions of all the inputs from
honest users, and unique correct renderings of all other valid
inputs, where unique simply means that no duplicates are
inserted.

As with traditional definitions of correctness, ours en-
sures that the adversary is unable to alter the inputs and
corresponding outputs of honest players. Our definition of
correctness, however, is unusual in two respects. First, by
including the notion of “rendering”, it allows for players to
collude with servers to make substitutions during the proto-
col execution (as mentioned above). Second, our definition
assumes the elimination of invalid input elements, while cor-
rectness definitions very often treat all inputs as valid.

Because of the notion of “rendering”, correctness in our
protocol does not guarantee robustness in the traditional
sense. In particular, dishonest users may try to alter their
inputs based on those of honest users, or dishonest users
and servers may collude to change input or output values in
the middle of a mix network execution based on input val-
ues and intermediate transcripts. In a payment scheme, for
example, the adversary might try to rig dishonest submis-
sions in the middle of the mix execution to duplicate honest
submissions. Thus, in addition to requiring correctness, our
robustness definition must ensure against the possibility of
the adversary creating a correlation between the outputs of
dishonest users and those of honest users. Our robustness
definition ensures against this possibility in clause (c). Note
that clause (c) is in fact critical for privacy as well as full
robustness: if the adversary A is able to correlate inputs of
dishonest users with those of honest users, she may be able
to trace the inputs of honest users.

Definition 4 (Robustness) A mix protocol is robust if,
for input set I, and in the presence of a static, active ad-
versary A as described above:
(a) The protocol terminates in polynomial time in N, n and
all security parameters.
(b) The output of the protocol is correct with overwhelming
probability over the coin flips of all participants.
(c) Let O′ represent the set of plaintext outputs that are

correct decryptions of I ′, and Ô = O − O′ the plaintext

renderings of inputs from dishonest users. Then Ô is com-
putationally independent of the output plaintext set O′ of
honest users.

Clause (c) may be stated more formally as follows. We
consider the following experiment. The adversary chooses a
pair (O0, O1), where O0 and O1 are two distinct assignments
to the plaintext set O′ of honest users. A secret coin is then
flipped to yield a bit b; the input set I ′ is selected uniformly
at random to yield output plaintext set Ob. This set is them
piecewise encrypted according to the method of encrypting
plaintexts for the mix network, and the resulting ciphertexts
are fed to the mix network, along with other input elements,
submitted by the adversary. Now the adversary A partici-
pates in the execution of the mix network, but does not see
O′ (or the associated decryption and MAC keys). Clause (c)
of our robustness definition is satisfied if no such adversary
can guess b with probability non-negligibly greater than 1/2.

Finally, we consider the property of privacy. Our defini-
tion states informally that the adversary cannot determine
which input elements provided by the honest user corre-
spond to a given plaintext m significantly better than by
making a guess at random.

Definition 5 (Privacy) We say that a mix network has
the property of privacy against an active adversary A if the
following holds. Let us suppose that the set of inputs I ′ pro-
vided by honest users contains r instances of ciphertexts cor-
responding to plaintext m. Then the adversary is incapable
with probability non-negligible greater than r/|I ′| of finding
an element C ∈ I ′ such that C corresponds to m.

3 Setup and building blocks

3.1 System parameters and setup

Public keys in our scheme are drawn from a cyclic group
G of order q, for some large, published prime q. A typical
choice would be a subgroup of order q of Zp, where p is a
large prime such that q | (p−1). We let g denote a published
generator for G. The security of the public-key operations
in our scheme depends upon the hardness of the Decision
Diffie-Hellman (DDH) problem over G.

Our scheme involves the participation of an odd num-
ber n = 2t + 1 of servers, denoted S1, S2, . . . , Sn. Let
Y0 = g. As a preliminary to the mixing operation, each
server Si selects three private keys, αi, βi, γi ∈U Zq , where
∈U denotes uniform, random selection. It then publishes
a triple (Yi, Ki, Zi) of corresponding public keys such that

Yi = Yi−1
αi , Ki = Yi−1

βi , and Zi = Yi−1
γi . Each server

proves knowledge of his private keys. Then, all three pri-
vate keys of each server are distributed among the full set
of servers using a (t + 1, n)-threshold scheme. This key
setup may be performed in a distributed manner using ver-
ifiable secret sharing (VSS) techniques. (We omit details,
but refer the reader to [11] for an overview and important
caveat.) Observe the somewhat unusual feature that the
keys (Yi, Ki, Zi) of server Si depend upon the key Yi−1 of
server Si−1. While this dependence enforces a strict or-
der on the key setup, it does not alter the basic techniques
for accomplishing it. Servers additionally perform a joint,
(t + 1, n)-threshold generation of private keys (βn+1, γn+1)
for a simulated server Sn+1, with corresponding public keys
(Kn+1, Zn+1) using, e.g., techniques from [11]. Let αn+1,i

and γn+1,i denote the respective shares of the private keys
held by Si.

We assume the existence of a bulletin board. This is a
publicly shared piece of memory to which all players have
read access and appendive, sequential write access with



authentication.2 We assume further that all writes to the
bulletin board proceed in synchronous time steps.

3.2 Public-key algorithms

Proof of equivalence of discrete logs. An important building
block in our schemes is a protocol for proving of a quadruple
(a, b, y, z) ∈ G4 that loga b = logy z = x, where the prover
knows x. This may be accomplished using standard proof-
of-knowledge techniques. In particular, the prover demon-
strates knowledge of loga b and logy z relative to a common
challenge c, as follows. She selects r ∈U G, computes com-
mitments w1 = ar and w2 = yr, and sends these to the ver-
ifier. The verifier returns a challenge c ∈U Zq. The prover
provides response s = cx + r mod q. The verifier checks
that w1b

c = as and w2z
c = ys. The verifier may, of course,

consist of a coalition of servers, provided that the challenge
is carefully generated. The scheme is honest-verifier zero-
knowledge with soundness dependent on the discrete log
problem. The protocol may be rendered non-interactive us-
ing the Fiat-Shamir heuristic [8]. In this case, c is computed
through application of a suitable hash function to w1 and
w2, and security proofs depend additionally on the random
oracle model. See [4, 5, 6] for further details. We denote a
proof on the tuple (a, b, y, z) by EQDL[a, b, y, z].

Compressed key scheduling. We introduce and make use of
an encryption method that we refer to as compressed key
scheduling, and which is a generalization of a method re-
cently and independently introduced in [26].

Our compressed key scheduling is essentially a public-
key encryption scheme whereby a sender encrypts a set of
(random) keys {ki}n+1

i=1 for all servers as a single ciphertext
y0. To do so, the sender selects a random exponent ρ ∈ Zq ,
and constructs the ciphertext y0 = Y0

ρ. The set of keys
{ki}n+1

i=1 is defined as ki = Ki
ρ, for 1 ≤ i ≤ n + 1 and

previously defined Ki. Observe that the sender may herself
easily compute {ki}n+1

i=1 .
To extract their respective keys, the servers do as fol-

lows. On receipt of yi−1, server Si computes (yi, ki, zi) =

(yi−1
αi , yi−1

βi , yi−1
γi ) which equals

(Yi
ρ, Ki

ρ, Zi
ρ). Server Si then sends yi to server Si+1. This

enables server Si+1 similarly to compute its keys. At the
end of the protocol, each server Si has derived keys yi, ki, zi,
where the first is passed on to the next server and the second
is used for decryption after having checked the correctness
of the incoming ciphertext using the third one. We note
that no coalition of fewer than t + 1 servers, not including
Si, can feasibly learn the decryption key ki.

Compressed key scheduling may be rendered ro-
bust by having each server Si post yi to the bul-
letin board, along with a proof of correct exponentiation
EQDL[yi−1, yi, Yi−1, Yi]. In the case where server Si fails
to publish yi correctly, a group of t+1 other servers can com-
pute yi distributively without revealing the private keys of
Si. Given the similarity of techniques here to those involved
in threshold signature schemes, such as those for DSS, we
do not consider details here. We instead refer the reader to,
e.g., [10].

2A bulletin board may be simulated or replaced by an authenti-
cated broadcast channel or Byzantine agreement protocol [23]. In an
asynchronous network, the latter is only robust against an adversary
actively corrupting fewer than one-third of the servers, and alters the
security of our mix construction accordingly.

It is possible to use more straightforward techniques to
achieve essentially the same functionality as compressed key
scheduling. The advantage of this new construction lies in
its efficiency. First, the sender need only provide a single
key for many servers. Second, as we shall see, it is possi-
ble to batch the associated EQDL proofs in a manner that
achieves a very high degree of computational and communi-
cation efficiency.

3.3 Symmetric-key algorithms

We employ a symmetric encryption scheme in our construc-
tion. Additionally, in order to defend against attacks in
which previously posted ciphertexts are posted again or al-
tered by malicious servers, we use a symmetric-key variation
of the standard method (see [15]) of augmenting the cipher-
text with a proof of knowledge, making this proof relative
to the ciphertext and some session-specific nonce I.

Message authentication code (MAC). Let k ∈ G be a sym-
metric key shared by a sender and receiver.3 We denote by
MACk[m] the message authentication code under key k of
message m for any m ∈ {0, 1}∗. We denote by lMAC a se-
curity parameter specifying the bit-length of the output of
the MAC.

The essential security property we rely on for our
construction is this. Suppose an adversary without any
knowledge of k is given message authentication codes
MACk[m1], MACk[m2], . . . , MACk[mu] for some u that is
polynomial in lMAC . It is infeasible for the adversary to pro-
duce MACk[m] on any message m 6∈ {mi}ui=1. We explore
this security requirement more formally in the appendix of
the extended version [14, 20] of this paper.

Symmetric-key encryption. Again, let k ∈ G be a symmetric
key shared by a sender and receiver. We denote by Ek[m] the
ciphertext on m under key k, and by Dk[c], the decryption
of ciphertext c under key k. Let lenc be a security parameter
on the encryption scheme. We denote the cipher by (E, D).
We make use of the following indistinguishability assumption
on the symmetric-key cipher for our scheme.

Assumption 1 (Indistinguishability) Let the
keys k0, k1 ∈U G be independently generated. Consider
the following experiment. An adversary with resources
polynomially bounded in lenc selects equal-length plaintexts
m0, m1 ∈ {0, 1}∗. For a random bit b ∈U {0, 1}, the adver-
sary is given ciphertexts c0 = Ek0 [mb] and c1 = Ek1 [m1−b].
The adversary outputs a bit b′. The indistinguishability
property states that there is no adversary such that b′ = b
with probability 1/2 + ε for positive ε non-negligible in lenc.

If E is stream cipher based on a pseudo-random genera-
tor (PRNG), then this assumption may be based on the
indistinguishability property of the PRNG. See [22] for a
comprehensive treatment of PRNGs.

3Typically, one does not use an element k ∈ G as a MAC key in
practice. It is easy, however, to convert k to the more conventional
form of symmetric key, such as a short bitstring. One possible means
is appropriate application of a hash function to k.



4 Mix scheme

Our aim now is to fuse components described above in sec-
tion 3 so as to combine the robustness of the underlying
threshold public-key cryptosystem with the efficiency of the
symmetric-key protocols. The central idea is to have players
construct inputs to the mix network as sequences of concen-
tric ciphertext layers, along with associated compressed key
schedules. For a given input, each server Si derives the
keys associated with the ith layer and removes it. Having
removed the ith layer from all inputs, server Si passes the
resulting ciphertexts to the next server.

The critical element in our construction is the ability of
a server to prove that it has correctly removed a given layer.
This is accomplished by having each ciphertext include a
MAC in each encryption layer. In particular, the (i + 1)st

encryption layer of a given input includes a MAC employ-
ing a key derivable by server Si+1 from the compressed key
schedule. Since server Si does not have access to these MAC
keys, it is infeasible for her to make substitutions or alter-
ations to the mix elements without being detected by or
colluding with server Si+1.

Another useful method is what we call open simulation.
A server is openly simulated by a quorum of players if these
perform some or all of its computation, without disclosing
the long-term secrets of the simulated player, but with no
regard for the secrecy of temporary secrets (such as the per-
mutation of values, if any.) Open simulation is used both to
trace cheaters and to finish off the mixing process.

Yet another important element is the threshold distri-
bution of the private keys of each server. In the case that
server Si+1 claims that server Si cheated, a coalition of the
other servers can verify the proof sent from Si to Si+1 and
reconstruct the MAC keys of Si+1 to verify her claim. The
latter is performed using open simulation of the MAC veri-
fication done by Si+1. Additionally, if any server Si fails to
remove the ith encryption layer correctly from some cipher-
text, the other servers can perform the removal (decryption)
in a distributed manner, by open simulation of the decryp-
tion step of this player. Note that when a server complains,
it need not reveal its state, and thus an honest server cannot
have its private information extracted even if “sandwiched”
by adjacent malicious servers. This is so since not all of a
server’s computation is openly simulated.

As the last server in this chain may itself be corrupt,
we include a final step in which servers jointly verify the
correctness of the final output, and decrypt those elements
that are determined to be correct. (Note that this forces
server Sn to commit to his computation – by posting his
output – before any server learns of the output plaintexts.)
We may view this as the open simulation of a server Sn+1

responsible for authenticating the output of server Sn. This
simulated server makes use of the private keys (βn+1, γn+1)
and the corresponding public keys (Kn+1, Zn+1), which were
jointly generated by the servers during the key generation
phase of the protocol.

If any server is found to have cheated, he is expelled and
simulated by a quorum of at least t + 1 of the remaining
servers, who are capable of reconstructing his private keys.
The computation is rewound to openly simulate the execu-
tion of the cheating server in its entirely.

4.1 Concentric encryption

We begin by describing the algorithm used by a player to
construct a ciphertext input to the mix network. This, the
reader will recall, consists of a sequence of concentric layers
of encryption, a concept first considered in its basic form
in [3]. We refer to the encryption algorithm described here
as concentric encryption and the resulting ciphertext as a
concentric ciphertext.

At the beginning of a given mixing round, the servers
jointly generate and publish a random nonce I of length
lnonce. Additionally, they publish an integer s describing
the permitted length of plaintext inputs to the mix. (Shorter
plaintexts may be padded out to s bits.) These parameters
are used in the generation of a concentric ciphertext.

Input: Plaintext m ∈ {0, 1}s.
Output: Ciphertext (c0, µ0, y0). We refer to c0 as the base
ciphertext, µ0 as the base MAC, and y0 as the compressed
key schedule.

procedure Concentric Encrypt

1. Compressed Key Schedule Generation. The player se-
lects a private key ρ ∈U Zq . She computes

{

ki = Ki
ρ 0 ≤ i ≤ n + 1

zi = Zi
ρ 1 ≤ i ≤ n + 1.

She computes the compressed key schedule as y0 = Y0
ρ.

2. Message Encryption. The player encrypts the message
m by computing

{

cn = Ekn+1 [m]
ci = Eki+1 [ci+1 ‖ µi+1] 0 ≤ i ≤ n − 1
µi = MACzi+1 [ci ‖ I] 0 ≤ i ≤ n.

In the mix network protocol, players post equal-length
input ciphertexts to the bulletin board until some triggering
event occurs. For example, servers may set a predetermined
limit on the number of input items to the mix, or else a dead-
line for the posting of input items. We denote the number of
ciphertexts by N , and denote the ordered set of ciphertexts

by {(c(j)
0 , µ

(j)
0 , y

(j)
0 )}Nj=1.

4.2 Mix network for honest-but-curious servers

For ease of exposition, we first present a simplified mix
network construction without robustness, but with privacy
against an honest-but-curious adversary. Inputs are en-
crypted using the concentric encryption protocol presented
above. Servers remove any duplicate inputs at the beginning
of the protocol.

Input: Concentric ciphertext sequence

{(c(j)
0 , µ

(j)
0 , y

(j)
0 )}Nj=1 on equal-length plaintexts

{m(j)}Nj=1.

Output: Plaintext sequence {mπ(j)}Nj=1, for secret per-
mutation π.



Protocol Honest Hybrid Mix

1. Compressed Key Schedule Generation. Server Si takes

input (c
(j)
i−1, µ

(j)
i−1, y

(j)
i−1), for 1 ≤ i ≤ N , and computes

its keys as follows for 1 ≤ j ≤ N .

{

ỹ
(j)
i = (y

(j)
i−1)

αi

k̃
(j)
i = (y

(j)
i−1)

βi

2. Message Decryption. Server Si performs the decryp-
tion:

(c̃
(j)
i ‖ µ̃

(j)
i )← D

k
(j)
i

[c
(j)
i−1]

3. Permutation. Si randomly permutes the ordered

set {(c̃(j)
i , µ̃

(j)
i , ỹ

(j)
i )}Nj=1. In particular, the server

Si selects a permutation πi on N elements uni-

formly at random, and sets (c
(j)
i , µ

(j)
i , y

(j)
i ) =

(c̃
(πi(j))
i , µ̃

(πi(j))
i ỹ

(πi(j))
i ). The set of decrypted and per-

muted triplets {(c(j)
i , µ

(j)
i , y

(j)
i )}Nj=1 is posted to the bul-

letin board.

Server Sn+1 is openly simulated by all the other servers.
The output of server Sn+1 is taken here to be the output
of the mix network. Note that the MACs are not used here
because of the assumption that the adversary is strictly pas-
sive. Apart from the presence of the MACs and the use of
key compression, this construction is somewhat similar in
spirit to previous non-robust hybrid constructions, such as
those described in [3, 31]. The privacy of the construction
may be seen to depend upon two things. First, the indis-
tinguishability property of the symmetric-key cipher, which
ensures the privacy of the mix. Second, the DDH problem.

In particular, an adversary should be unable to link y
(j)
i−1

with y
πi(j)
i . An additional security element resides in the

nonce I the use of MACs. This ensures against re-use of
ciphertext components, and ensures the non-malleability of
posted ciphertexts.

4.3 Full protocol

We now present the full hybrid mix network construction,
with robustness against any numbers of users and any mi-
nority coalition of corrupt servers. We begin by recalling
that the private keys of each server are distributed among
the other servers according to a (t + 1, n)-threshold scheme.
Thus, any coalition of t + 1 servers can simulate the oper-
ations of a given server Si without the participation of Si.
This means that they can verify that server Si processed a
given input item correctly by reconstructing the associated
keys. Likewise, such a coalition of servers can remove server
Si from the current invocation of the mix network by re-
constructing all of its keys for the current batch of input
items. We use these observations to achieve robustness in
the full protocol Hybrid Mix, but do not describe the relevant
protocols in detail, as they are fairly standard.

Another important element in the full protocol is the
method server Si uses to prove that it has extracted the

keys {y(j)
i }Ni=1 correctly. Recall from above that y

πi(j)
i =

(y
(j)
i−1)

αi . Server Si could straighforwardly prove this equal-
ity for each j using EQDL were it not for the privacy re-
quirements. Instead of using any of the methods of exist-
ing mix networks, we provide a new and more efficient so-

lution. Let Pi =
∏N

j=1
y
(j)
i , and let server Si prove that

Pi = Pi−1
αi . This is not sufficient in itself to demonstrate

that y
πi(j)
i = (y

(j)
i−1)

αi for all j. In combination with the
checks afforded by symmetric-key operations in the mix,
however, this batch proof method does indeed ensure that
individual keys have been correctly extracted, as we show in
the appendix of [14, 20].

In the following, we assume that should a mix server
refuse to cooperate or produce incorrect outputs and thus
be expelled, then a quorum of the other servers can simu-
late the absentee. For practical purposes, there would be a
time limit associated with each step, after which an inactive
server is considered absent. We also assume that any iden-
tical duplicates of input elements are removed before the
beginning of the protocol. Finally, we note that N , the car-
dinality of the set of ciphertexts in the mix, may diminish
as invalid ciphertexts are eliminated. For simplicity, we do
not note this explicitly in our protocol description.

Input: Concentric ciphertext sequence

{(c(j)
0 , µ

(j)
0 , y

(j)
0 )}Nj=1 on equal-length plaintexts

{m(j)}Nj=1.

Output: Plaintext sequence {mπ(j)}Nj=1, for secret per-
mutation π.

Protocol Hybrid Mix

1. Each server Si obtains input the ordered set

{c(j)
i−1, µ

(j)
i−1, y

(j)
i−1}

N

j=1
, and performs the following steps:

(a) Key Regeneration. Server Si computes its keys as
follows for 1 ≤ j ≤ N .











ỹ
(j)
i = (y

(j)
i−1)

αi

k̃
(j)
i = (y

(j)
i−1)

βi

z̃
(j)
i = (y

(j)
i−1)

γi

(b) MAC verification. Server Si verifies that

µ
(j)
i−1 = MAC

z̃
(j)
i

[c
(j)
i−1 ‖ I] for all 1 ≤ j ≤ N . If

the MAC is incorrect for any j, then server Si in-
vokes the procedure Verify Complaint(i, j) detailed
below.

(c) Message Decryption. Server Si performs the de-
cryption:

(c̃
(j)
i ‖ µ̃

(j)
i )← D

k̃
(j)
i

[c
(j)
i−1]

(d) Permutation. Server Si randomly permutes

{(c̃(j)
i , µ̃

(j)
i , ỹ

(j)
i )}Nj=1. In particular, Si selects a

permutation πi on N elements uniformly at ran-

dom, sets (c
(j)
i , µ

(j)
i , y

(j)
i ) =

(c̃
(πi(j))
i , µ̃

(πi(j))
i ỹ

(πi(j))
i ), and posts to the bulletin

board the ordered set {(c(j)
i , µ

(j)
i , y

(j)
i )}Nj=1.



(e) Batch proof of correctness of output keys. Server

Si proves the correctness of the set {y(j)
i }Nj=1, as

follows. Server Si proves that Pi = Pi−1
αi as

EQDL[Pi−1, Pi, Yi−1, Yi], where Pi =
∏N

j=1
y
(j)
i .

If Si+1 determines that the proof is incorrect, then
Si+1 invokes
Verify Complaint.

2. The output of Sn is {(c(j)
n , µ

(j)
n , y

(j)
n )}Nj=1. Servers sim-

ulate server Sn+1 as follows. Players jointly compute

z
(j)
n+1 for 1 ≤ j ≤ N , and then check the MACs

on all messages output by Sn. If the MAC for mes-
sage j is incorrect, then servers invoke the procedure
Verify Complaint(n + 1, j), otherwise the servers jointly

compute k
(j)
n+1 and m(j) = D

k
(j)
n+1

[c
(j)
n ].

The procedure Verify Complaint(i, j) is used to investigate
a complaint made by server Si that the input triple

(c
(j)
i−1, µ

(j)
i−1, y

(j)
i−1) is invalid. By simulating processing of

the message in question by Si and, if need be, by Si−1,
servers can determine which of the following three possibil-
ities holds: (1) The complaint of server Si is invalid; (2)
Server Si−1 deviated from the protocol; or (3) The cipher-
text was invalid as posted. The servers jointly expel any
corrupt server from the protocol or else remove the input
triple from the mix if it is determined to be invalid. If a
server is expelled, a replacement server is selected from a
pool of players that have not yet been involved in the mix-
ing (but only voting). If a triple is removed, it is purged
from all previous steps (which can be done by each server
revealing what input it corresponded to, and revealing the
corresponding keys for verification purposes). The value N
is modified accordingly.

Procedure Verify Complaint(i, j)

Servers compute z̃
(j)
i using their shares of γi;

If µ
(j)
i−1 = MAC

z̃
(j)

i

[c
(j)
i−1 ‖ I] and the proof

EQDL[Pi−2, Pi−1, Yi−2, Yi−1] is correct, then
Servers expel Si (”false alarm”);

else if i = 1, then

Servers remove (c
(j)
0 , µ

(j)
0 , y

(j)
0 ) from the mix

(”bad input”);
else

Server Si−1 publishes j′ = π−1
i−1(j);

If j′ 6∈ {1, 2, . . . , N}, then
Servers expel and simulate Si−1

(”cheater”);
else

Servers compute k
(j′)
i−1 from y

(j′)
i−2

using their shares of βi−1;

If (c̃
(j)
i−1 ‖ µ̃

(j)
i−1) 6= D

k
(j′)
i−1

[c
(j′)
i−2]

(”incorrect decryption”) or

µ̃
(j′)
i−1 6= MAC

z̃
(j′)
i

[c
(j′)
i−1 ‖ I] or

EQDL[Pi−2, Pi−1, Yi−2, Yi−1] is wrong
(”should have complained”), then

Servers expel and simulate Si−1

(”cheater”);
else

Servers remove (c
(j)
i−1, µ

(j)
i−1, y

(j)
i−1)

from the mix (”bad input”).

Remark on broadcast assumptions. It will be ob-
served that prior to the simulation of Sn+1, if servers sign
their outputs, the protocol does not require the use of broad-
cast until and unless servers misbehave. The simulation
of Sn+1 can in fact be modified to enable a similar elim-
ination of broadcast assumptions. We briefly sketch the
idea here. When it has finished its computation, server

Sn sends {c(j)
n , µ

(j)
n , y

(j)
n }Nj=1 to all servers. Each server Si

in turn sends {(z(j)
n )γn+1,i}Nj=1 to all other servers, along

with non-interactive proofs that these shares are correctly

constructed. This enables servers to compute {z(j)
n+1}Nj=1

through LaGrange interpolation, after which the MACs can

be verified. Servers may similarly compute k
(j)
n+1 for all ci-

phertexts c
(j)
n with valid MACs, allowing decryption of these

ciphertexts. If, at any point in the protocol, some server
does not send its results prior to an established time-out, or
else some server detects an error, then it becomes necessary
to make use of a broadcast channel.

4.4 Protocol efficiency and security

Let us briefly describe the asymptotic efficiency of
Hybrid Mix, assuming that all proof protocols are non-
interactive – and thus with security dependent on both the
DDH and random oracle assumptions. In the optimistic
case, i.e., assuming honest behavior by all servers, each
server must perform computation equivalent to O(N + n)
modular exponentiations and O(Nn) modular multiplica-
tions as a total for all inputs. In the presence of malicious
behavior, costs rise to O(Nn) modular exponentiations per
server. These tallies exclude the costs of symmetric-key op-
erations. Note that it is the batch verification procedure
that renders the optimistic costs lower than those for the ma-
licious case. The aggregate broadcast complexity is O(snN)
bits plus O(Nn) group elements for both the optimistic and
malicious cases, where s is the length of the plaintexts cor-
responding to the inputs.

A drawback to our construction is the cost of construct-
ing an input ciphertext by means of
Concentric Encrypt. This requires O(n) modular exponenti-
ations, in addition to the cost of the symmetric-key opera-
tions.

Our protocol is robust and also private according to our
definitions in section 2.

5 Open Problems

It remains to be seen how to achieve public verifiability for
an efficient hybrid mix. While this is theoretically straigh-
forward using general multi-party computation techniques,
neither [26] nor this paper succeeds in reaching this goal
without invocation of such methods. It is the authors’ be-
lief that careful use of digital signatures, rather than MACs,
may in fact enable public verifiability to be achieved within
the protocol framework outlined here.
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