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Abstract

An all too real threat to the privacy offered by a mix net-
work is that individual mix administrators may volunteer
partial tracing information to a coercer. While this threat
can never be eliminated – coerced mix servers could sim-
ply be forced to reveal all their secret data – we can deter
administrators from succumbing to coercive attacks by rais-
ing the stakes. We introduce the notion of a trace-deterring
mix permutation to guarantee privacy, and show how it en-
sures that a collateral key (used for an arbitrary purpose)
be automatically revealed given any end-to-end trace from
input to output elements. However, no keying material is
revealed to a party who simply knows what input element
corresponds to what output element. Our techniques are
sufficiently efficient to be deployed in large-scale elections,
thereby providing a sort of publicly verifiable privacy guar-
antee. Their impact on the size of the anonymity set – while
quantifiable – are not of practical concern.

1 Introduction

Mix servers transform a set of input elements to a per-
muted set of output elements. The use of probabilistic en-
cryption methods for the generation of the input elements
makes correlation of inputs and outputs infeasible as long
as at least one of the mix servers involved is honest, and
refuses to reveal its input-to-output correspondences.

Voluntary selective disclosure of mix traffic has recently
been recognized as an emerging threat [3, 31]. Here, the
attacker secures cooperation by means of social coercion
(e.g., bribery) of the administrator of a mix server, thereby
obtaining information about selected input-output corre-
spondences for this server. Such information is referred to
as a trace. A trace is only meaningful if it is performed for
the same elements through each and every step of the mix
network; this is referred to as an end-to-end trace. One can
distinguish between a situation in which the trace informa-
tion consists simply of what output element a given input

element corresponds to, and a situation in which the mix
server also outputs a proof that the two elements in ques-
tion indeed do correspond to each other. This distinction is
not of importance to us, and we will – for simplicity – as-
sume that a trace simply reports a relationship, without any
evidence.

Traces vary in the amount of information they leak
about the correspondence between inputs and outputs. The
strongest possible trace discloses the individual correspon-
dence between one input and one output, or several such
correspondences. Weaker traces may expose only the global
correspondence between a subset of the inputs (e.g., a pair
of inputs) and a subset of the outputs, without revealing the
individual correspondences within the subset (e.g., which
element of the input pair corresponds to which element of
the output pair). Other than the trivial global correspon-
dence between the set of all inputs and all outputs, all traces
are undesirable, since they all compromise to some degree
the privacy of the mix server.

In this paper, we address the problem of voluntary dis-
closure of traces. Our approach is to discourage coercion
by ensuring the immediate disclosure of some collateral in-
formation of each server that collaborates in providing a
trace. This collateral information may be the secret mix
key of the server in question, thereby making it impossible
to perform partial traces since all correspondences will be
revealed as soon as one is. However, we recognize that this
may sometimes be undesirable, and note that the collateral
key may be of some other form as well, including simply a
key whose disclosure provides publicly verifiable evidence
of the server’s breach of privacy. This approach may be par-
ticularly suitable for applications of mix networks such as
electronic elections (see [7] for example).

We emphasize the following important properties of our
technique for deterring voluntary trace disclosures in re-
encryption mix networks:

First, exposure of a trace does not (in the context of elec-
tronic elections) link the other voters to their ballots
as in previous coercion deterrent schemes (e.g., [31]).



While it is possible to embed the mix network’s key
into a trace, the collateral keys of mix servers can cor-
respond to any agreed-upon public key. The holder of
a trace learns the collateral keys of the mix servers.
Knowledge of a collateral key provides irrefutable ev-
idence of a breach of privacy.

Second, it is meaningful to consider an adversary that ei-
ther infiltrates or silently coerces all mix servers. We
model the stealthiness of this attack with an adversary
who forces servers to write any selected information
on a tape, but can not provide interaction with other
servers. These practical constraints preclude an attack
where the servers use a general multi-party protocol
that (very inefficiently, and using lots of interaction)
computes and proves the validity of a given end-to-end
trace without revealing its intermediate steps or any se-
cret information.

Third, the privacy of our construction is stronger than the
secrecy of the collateral key. As will be clear from
our protocol, it is not possible to compute traces from
knowledge of the collateral information; however, the
converse is necessarily true.

Fourth, careful selection of collateral information also has
the ancillary benefit of increased diligence. An ad-
ministrator may refuse cooperation with an adversary,
but nevertheless fall short of best-practice technique.
Rather than stonewall the existence of problems, the
administrator benefits from proactive discovery of se-
curity threats.

We achieve our goals using a novel approach that we
name trace-deterring permutations. The key idea behind
our scheme is easily explained. We force mix servers to
choose their permutations only from one of two sets of per-
mutations. These sets are disjoint, and designed such that
any non-trivial trace between inputs and outputs automati-
cally reveals whether the permutation that produced the out-
puts from the inputs belongs to one set, or the other.

When presented with inputs, a mix server applies a per-
mutation chosen either from one set of permutations or from
the other. While the permutation is chosen uniformly at ran-
dom within a set, the set itself is determined based on one
bit of the server’s secret collateral key. Any trace causes
this bit to be leaked, since it automatically allows a verifier
to learn which set the permutation was chosen from. Since
there is only one bit of collateral key associated with each
round of mixing, each server needs to perform a sequence
of trace-deterring permutations in order to represent mean-
ingful collateral keys.

The resulting Trace-Deterring (or TD) mixing protocol
thus forces a server’s permutation selection to correspond to
a collateral secret key. This is done by means of appropriate

commitments and proofs, which are both surprisingly sim-
ple. A single complete trace can be seen to reveal the secret
collateral key for every mix server along the trace’s path.

Organization. The rest of the paper is organized as fol-
lows. Section 2 reviews related work and its relation to our
new technique. Section 3 discusses our attack model and in-
troduces some necessary background on re-encryption mix
networks. Section 4 gives a high-level overview of our
trace-deterring (TD) techniques. Section 5 describes TD
permutations. Section 6 describes the commitment protocol
used by mix servers to commit to their collateral secret key.
Section 7 describes a single round of TD mixing. Finally,
section 8 presents the design of a complete TD mix net-
work, and analyzes the security property of our approach.
We conclude in section 9.

2 Related Work

Chaum first formalized mixing [6], a cryptographic laun-
dering technique for preventing traffic analysis of elec-
tronic mail, providing unlinkability between sender and re-
ceiver. In Chaum’s method, known as decryption mixing,
the sender submits a serially encrypted message which is
subsequently decrypted by the intermediate mix servers,
and forwarded in a different order than received. However,
decryption mixing cannot prevent the sender of a message
from observing the trace of her own message. This allows
an active attacker to insert a probe message to discover the
collateral secret attached to a trace. Therefore, our tech-
nique is not designed for decryption mix networks.

Re-encryption mixing [29, 1] achieves the property that
the intermediate messages are unrecognizable to all, includ-
ing their originators. For the first stage of this scheme,
senders encrypt their messages once using a common public
key. Servers forward randomly re-encrypted messages. In
the second stage the mix servers collaboratively decrypt the
messages with their share of the secret key. Our deterrent
technique is based upon re-encryption mixing, and there-
fore does not make the collateral secret key vulnerable to an
active attacker.

Since they were first proposed, mixes have been building
blocks in strong electronic election schemes [6, 16, 29, 32,
23]. In this context, robustness has parity with unlinkability.
Robustness primarily refers to systems in which each mix is
asked to provide a proof or strong evidence for its honest be-
havior. For example, Ogata et al. [28] use cut and choose
techniques to achieve robust mix-nets. Subsequent schemes
improve both the efficiency of zero knowledge proofs [21]
and attain universal verifiability [1, 2], i.e. verifiability by
third party observers. Other protocols employ layer redun-
dancy [12] and random partial checking [23] to achieve ro-
bustness.



No mixing protocol prevents an administrator from log-
ging and later divulging input to output correspondences
performed by his machine. This form of voluntary disclo-
sure is an undetectable attack. So far, the only mitigation
is deterrence: a secret that is valuable to the owner or ad-
ministrator of a mix server is held as collateral. One such
approach, fragile mixing [31], constrains the choice of per-
mutations to those where knowledge of one input to output
correspondence reveals all remaining correspondences. As-
suming that administrators value the privacy of some mes-
sages in each batch, this method encourages them to uphold
the secrecy of all linkages.

Our trace-deterring technique has significant advantages
over fragile mixing. We do not need the assumption that ev-
ery message batch contains some messages that are valuable
to mix administrators. Any secret key can be used as col-
lateral, which avoids the aforementioned secrecy-upholding
problem. Disclosure of a trace could be made publicly ver-
ifiable, through the revelation of the collateral secret key.
Finally, our trace-deterring technique does not constrain the
permutation selection nearly to the same extent fragile mix-
ing does. As we shall see, our technique allows a mix server
to mix n inputs with a permutation chosen from a set of size
(n−1)!, versus a set of size n for fragile mixing. For a given
number of rounds of mixing, our technique thus offers bet-
ter privacy than fragile mixing.

Other research is also related to the voluntary disclosure
problem. For example, proprietary certificates [22, 4] ad-
dress the problem of certificate-lending to achieve unautho-
rized access. This scheme binds collateral information to
the private key of the proprietary certificate so that its divul-
gence punitively leaks the collateral information. Dwork,
Lotspiech, and Naor [13] introduced the concept of “self-
policing via sensitive information” with signets, a proposal
for preventing illegal redistribution of digital content. These
approaches are close to ours in spirit. They all hold some
collateral secret to deter a party from acting dishonestly.

Traces are not the only method for linking sender and re-
ceiver in a mix network. Statistical disclosure [11], intersec-
tion [24], and timing attacks [14, 25] correlate the senders
and receivers without determining traces. However, the col-
lateral secret key in our scheme will not be revealed if any
linkages are deduced in this manner.

Our work rests upon the correctness of several proofs of
knowledge and commitment schemes: equal discrete loga-
rithms [9], knowledge of discrete logarithm, verifiable shuf-
fling [17, 26, 20], and splitting techniques from Pedersen’s
non-interactive secret sharing [30].

3 Preliminaries

3.1 Attack model

As is standard in the context of mix networks, we model
all players as polynomial-time Turing Machines with read
access to a public bulletin board. In addition, mix servers
also have appendive write access to the bulletin board. The
mix servers have a certified public key of some suitable
format. In the case of decryption mixes (and many re-
encryption mixes), the servers also have access to the corre-
sponding secret key.

Corruption. A large number of different models have been
developed to describe adversarial behavior. In the context
of mix networks, it is commonly assumed that an adversary
may control and fully coordinate the actions of some set of
mix servers. This is referred to as corrupting the servers
in question. Corruption may take place at any time during
the lifetime of the mix network. It is always assumed that
the adversary cannot corrupt a quorum of mix servers. For
simplicity, the corruption is typically assumed to be static;
however, one could divide time into intervals and consider a
mobile adversary that may corrupt a different set of servers
(below a quorum) in each time interval. In this paper, we
make the standard assumption that the corrupting adversary
is static.

Coercion. In addition to being able to corrupt any non-
quorum of servers, we also allow the adversary to coerce
any number of mix servers (possibly all servers). The coer-
cion may take place at any time during the lifetime of the
mix network. An adversary coerces a server by sending it a
coerce message, containing a description of what secret in-
formation it wants the coerced party to divulge. (This may
simply be all the secret information stored by the server in
question.) The victim of the coercion responds to the at-
tacker with the requested information; after that, no further
interaction arising from the coercion is allowed. Thus, this
restriction disallows interaction between servers as part of
the coercion (apart from allowing coerce messages to be
functions of responses to previous coerce messages.) This
models an insider attack in which information can be stolen,
but protocols cannot be replaced. This is a realistic assump-
tion in all protocols where there may be some public audit
of communication between legal protocol participants (as is
afforded by the use of a bulletin board) and in which the
attacker has temporary read access to some secret storage
area, whether the corresponding coerced server is aware of
this or not. To the best of our knowledge, this model of
coercive behavior is novel.



3.2 ElGamal Encryption

Let g be a generator of Gq , a multiplicative subgroup
of order q where the Decisional Diffie-Hellman problem is
hard. The secret key, x, is chosen at random from Z

∗
q , de-

noted x
R← Z

∗
q . The public key, y, is the value gx ∈ Gq.

To encrypt a message m ∈ Gq, one chooses γ
R← Z

∗
q

and evaluates the ordered pair (gγ ,myγ). Decryption of
an ElGamal ciphertext (G,M) is computed by the expres-
sion M · G−x. One can re-encrypt a ciphertext (G,M) by

choosing δ
R← Z

∗
q and evaluating (Ggδ,Myδ). The de-

cryption method remains the same. Decryption is a homo-
morphism from the pairwise multiplicative group of cipher-
texts to the multiplicative group of plaintexts: Let (G,M)
and (F,N) be ciphertexts for m and n respectively. Then
(G × F,M ×N) is a ciphertext for m × n. We will make
use of the following protocols:

Proof of knowledge of discrete logarithm (KDL) [8]
A prover P proves to an honest verifier V the knowledge of
the discrete logarithm base g for a ∈ Z

∗
q without leaking out

any information about logg a. We let KDLg {a} denote an
instance of this protocol. The computational cost of the pro-
tocol KDLg {a} given in [8] is one modular exponentiation
for P and two modular exponentiations for V .

Proof of correct re-encryption (PCR) [9]
A prover P proves to an honest verifier V that an ElGa-
mal ciphertext (G′,M ′) is a re-encryption of a ciphertext
(G,M) without leaking any other information. We let
PCR {(G,M)� (G′,M ′)} denote an instance of this pro-
tocol. The proof consists of showing that logg(G′/G) =
logy(M ′/M) = r, without leaking any information about
the value r. The computational cost of this protocol is 2
modular exponentiations for P and 4 modular exponentia-
tions for V .

Discrete logarithm proof systems [5, 10, 33]
An efficient zero-knowledge proof can be constructed for
any monotone boolean formula whose atoms consist of the
protocols KDL or PCR. This paper uses a single boolean
formula, whose computational cost for P and V will be an-
alyzed in the section where it is presented (Section 7).

3.3 Re-encryption Mix Networks

An ElGamal mix is a list of ciphertexts followed by a
permuted list of the re-encrypted ciphertexts. Let L =
[(Gj ,Mj)] and L′ = [(G′

j ,M
′
j)] be two lists of ElGamal

ciphertexts. To indicate that L′ consists of the elements of
L re-encrypted and permuted according to a permutation π,
we use the following notation:

L′ = MIX π(L).

Verifiable mixing. Verifiable mixing protocols [17, 20,
27] allow a mix server to prove to a verifier that L′ =
MIX π(L). More precisely, let L = [(Gj ,Mj)] and L′ =
[(G′

j ,M
′
j)] be two lists of ElGamal encrypted messages. A

verifiable mixing protocol allows the mix server to prove the
existence of a permutation π and a sequence of exponents γj

such that (G′
j ,M

′
j) = (Gπ(j)g

γj ,Mπ(j)y
γj ), without leak-

ing any information about π or the values γj . Given n input
ciphertexts, the computational cost of the most efficient ver-
ifiable mixing protocol [20] is 6n modular exponentiations
for the prover (the mix server) and 6n modular exponentia-
tions for the verifier. We denote a proof of verifiable mixing

PVM {L� L′} .

Equivalent mixing. We say that two mixes are equiva-
lent when they share the same permutation. More precisely,
let L′

0 = MIX π0(L0) and L′
1 = MIX π1(L1). These two

mixes are equivalent if π0 = π1. To prove that two ElGamal
ciphertext mixes are equivalent, we run a verifiable mix pro-
tocol on the pairwise product of ciphertexts of both mixes
(see [19] for detail). The computational cost of a proof of
equivalent mixing is thus equal to the cost of a verifiable
mixing protocol. We denote a proof of equivalent mixing

PEM { (L0 � L′
0) = (L1 � L′

1) } .

4 Overview

In this section, we give a broad overview of our approach
to deterring voluntary trace disclosure in mix networks. A
regular mix network applies to a set of n inputs a permuta-
tion chosen uniformly at random from the set T of permuta-
tions on n elements. Our trace-deterring mixnet, in contrast,
defines two disjoint sets of permutations T0 and T1. A mix
server applies a permutation chosen either from T0 or from
T1. The choice is dictated by the bits of a secret key held by
the server (we call this secret key the collateral secret key
of the server).

More precisely, let n > 0 denote the number of inputs in
a mixing batch and let T denote the set of permutations on
n elements. A trace-deterring partition, or TD-partition, is
a partition of T into three disjoint subsets: T0, T1 and T∗.
Let bi denote a bit of the server’s collateral secret key. If
bi = 0, the server applies to the batch a permutation cho-
sen (uniformly at random) from the set T0. If bi = 1, the
server applies to the batch a permutation chosen (uniformly
at random) from the set T1. The set T∗ consists of left-over
permutations that are never used by the mix server.

Definition 1. (Trace-deterring partition) Let T denote
the set of permutations on n elements, and let (T0, T1, T∗)
be a partition of T into three disjoint subsets. We say that
(T0, T1, T∗) is a trace deterring partition, or TD-partition, if



for all π0 ∈ T0 and all π1 ∈ T1 and all subsets M ⊂ Zn

such that 0 < |M | < n, we have π0(M) �= π1(M).

This definition states that the knowledge of any (strict,
non-empty) subset of the inputs, and the image of this sub-
set by a permutation π chosen from T0∪T1 reveals whether
π ∈ T0 or π ∈ T1. This property of TD-partitions de-
ters a dishonest mix server from revealing to a third party
any information that would help decrease the size of the
anonymity set of a message. Indeed, if the server reveals
any correspondence between a subset of its inputs and a
subset of its outputs, the correspondence also reveals one
bit of the server’s collateral secret key. This bit is incrim-
inating evidence of the server’s breach of privacy (a single
bit is very weak evidence, but as we shall see, a complete
trace exposes the complete collateral key of a server).

Definition 1 is the strongest possible, in the sense that
it prevents the mix server from revealing the image of any
non-empty strict subset of the inputs. The server can not
reveal the image of single input. Nor can it reveal what pair
of outputs (as a set) corresponds to a pair of inputs, nor for
that matter the image (as a set) of any strict subset of the
inputs. We feel this strong definition is justified. Since it
is difficult to anticipate the privacy requirements of specific
applications, privacy primitives should be designed with the
most conservative assumptions possible.

Example. One example of a TD-partition for n = 3
is T0 = {[1, 2, 3]}, T1 = {[2, 3, 1], [3, 1, 2]} and
T∗ = {[1, 3, 2], [2, 1, 3], [3, 2, 1]}. It is easy to verify
that knowledge of any (strict, non-empty) subset of the
inputs, and the image of that subset by a permutation
chosen from T0 ∪ T1 reveals whether the permutation
belongs to T0 or T1. In this toy example, the sets T0 and T1
contain only “shift” permutations (like fragile mixing [31]),
but in the next section we will define TD-partitions for
which |T0 ∪ T1| = (n− 1)!.

In a nutshell, our approach is to let a mix perform mul-
tiple rounds of mixings on an input batch. In each round of
mixing, a random permutation is chosen from either T0 or
T1 according to one bit of the server’s collateral secret key.
Any trace between inputs and outputs discloses whether the
permutation is in T0 or T1 and thus also discloses the corre-
sponding bit of the secret collateral key.

Figure 1 illustrates the idea. In the figure, a collateral
secret key string 10 . . . 1 is committed through a Key com-
mitment scheme (Section 6). The TD-partition in this ex-
ample defines T0 as the identity permutation singleton and
T1 as the set of circular permutations (Section 5). The cor-
respondence between the committed bits of the collateral
key and the permutations applied in the mixing rounds is
proved in zero-knowledge. If the mix traces any subset of
the input messages, the input-to-output correspondence re-

veals whether the permutation applied is the identity or a
circular permutation — thus also revealing whether the cor-
responding bit of the collateral key is 0 or 1.

1                    0       …… 1Secret key committed during 
the system setup20

2
rhga 31

3
rhga11

1
rhgaKey commitment

……
enforced through

TDM protocol
Trace-Deterring
Mixing rounds

Key-exposing
trace

……

Figure 1. Trace-deterring protocol.

TD partition (Section 5). This paper defines a specific TD-
partition that satisfies two additional properties required for
our mix network application:

1. Privacy. At least one of the sets T0 or T1 must be suf-
ficiently large to ensure that a mix network that selects
permutations only from T0 ∪ T1 offers good privacy.

2. Correctness. Let bi denote one bit of the collateral se-
cret key of a mix server. We need an efficient proto-
col that allows a mix server to prove that it applied a
permutation selected from T0 if bi = 0, or from T1 if
bi = 1.

Collateral key commitment (Section 6). The collateral
key commitment (KC) protocol is run only once in a setup
stage to commit every mix server to its collateral secret key.
A mix server executes a zero-knowledge protocol with an
honest verifier to prove that it has correctly committed to its
collateral key.

Trace-deterring mixing round (Section 7). One round of
trace deterring mixing (TDM) binds one bit of a server’s
collateral key to one permutation applied to a batch of mes-
sages. The TDM mixing protocol does not consume any
keying information and can be run a polynomial number of
times for (KC). In TDM, a mix server takes as input a com-
mitment to a bit b of its collateral key and a list of ElGamal
ciphertexts. The server re-encrypts and mixes this list ac-
cording to a permutation chosen from the set T0 if b = 0 or
from the set T1 if b = 1. Finally, the server outputs the per-
muted list and proves to an honest verifier that it executed
the TDM protocol correctly.

Trace-deterring mix network (Section 8). Since there is
only one bit of collateral key associated with each round of



mixing, each server needs to perform a sequence of trace-
deterring permutations in order to represent meaningful col-
lateral keys. If the server performs these transformations on
the same batch consecutively, it can reveal only an end-to-
end correspondence of a message to a third party. This can
be done without any communication with other mix servers.
We remove this option by interleaving the sequential mixing
of independent servers. The definition of a TD-partition en-
sures that any complete trace of the input to output reveals
the collateral keys.

5 Trace-Deterring Partition

Throughout this section and the rest of this paper, we let
n denote the number of inputs submitted to the mix server.
We let T denote the set of permutations on n elements. It
is well-known that |T | = n!. We let Id ∈ T denote the
identity permutation on n elements.

In what follows, we define a specific TD-partition that
we will serve as the building block of our TD-mixing pro-
tocol. Our TD-partition is based on circular permutations,
which are defined as follows:

Definition 2. (Circular permutation) Let π ∈ T be a per-
mutation on n elements. We say that π is a circular permu-
tation if its cyclic decomposition contains a single cycle of
length n. In other words, a circular permutation is a permu-
tation for which the successive images of any element form
a cycle of length exactly n.

Throughout the rest of this paper, we let C ⊂ T denote
the set of circular permutations on n elements. The number
of circular permutation is |C| = (n − 1)!. Circular per-
mutations should not be confused with “shift” permutations
(there are only n shift permutations on n elements). For ex-
ample, with n = 4, the permutation π defined by π(1) = 3,
π(2) = 4, π(3) = 2 and π(4) = 1 is a circular permutation
(its cyclic decomposition contains a single cycle (3, 4, 2, 1)
of length 4), but it is not a shift permutation.

Proposition 1. Let T∗ = T − (C ∪ Id) denote permuta-
tions that are neither circular nor the identity. The partition
({Id}, C, T∗) is trace-deterring.

Proof. Let π ∈ T1 and let M be a subset of inputs elements
such that 0 < |M | < n. We must show that Id(M) �=
π(M). We have Id(M) = M . We also have π(M) �=
M , for otherwise π would have a cycle of length strictly
less than n, contradicting the assumption that π is a circular
permutation. It follows that Id(M) �= π(M).

Proposition 2. We define the size of a TD-partition
(T0, T1, T∗) as max(|T0|, |T1|). The partition ({Id}, C, T∗)
is of size (n− 1)!

The proof of this proposition is immediate: it is a well-
known fact that |C| = (n − 1)!. The partition ({Id}, C, T∗)
is of maximal size in the following sense: any TD-partition
(T0, T1, T∗) such that T0 = {Id} must satisfy T1 ⊆ C (the
proof is in the appendix).

An equivalent definition. Let ν be the permutation on Zn

defined by ν(i) = i + 1 mod n. The permutation ν is
called the “shift” permutation. Let ◦ denote the composi-
tion of functions. We define the set of permutations that are
conjugates of ν by elements of T as:

{π−1 ◦ ν ◦ π | π ∈ T }.

Proposition 3. We have C = {π−1 ◦ ν ◦ π | π ∈ T }.
This proposition states that the set of circular permuta-

tions is exactly the same as the set of conjugates of the shift
permutation ν. The proof is given in the appendix. This
equivalent definition will prove useful in Section 7 to let a
mix server prove that a batch of inputs was mixed correctly
according to our TD-partition.

6 Collateral Key Commitment Protocol

The collateral key-commitment (KC) protocol lets a mix
server e generate a collateral public key and commit to the
bits of the corresponding secret key. The protocol KC takes
as input a generator g of a group Gq of order q, and the
public key y ∈ Gq of the mix network. The protocol outputs
a collateral key ye ∈ Gq for mix server e, together with
a list of commitments [ai] to the bits of the corresponding
secret key se (such that ye = gse). The protocol also allows
the mix server to prove the correctness of the commitments,
without leaking any information about the secret key. We
denote the protocol by (ye, [ai]) ← KC (g, q, y). We note
that the KC protocol only needs to be executed once during
the system bootstrap stage.

Protocol 1. Key commitment protocol (ye, [ai]) ←
KC (g, q, y)

• P generates a secret key se
R← Z

∗
q , and outputs the

corresponding public key ye = gse . We denote the
bits of the secret key se by bi for 0 ≤ i < k.

• V sends h
R← Gq/{1} to P , where h is used to blind

P’s commitments.

• Commitment. For every bit bi of the secret key (0 ≤
i < k), P chooses a private exponent ri

R← Z
∗
q and

outputs the commitment ai = gbihri .

• Proof. P proves to V the correctness of the commit-
ments ai to the bits bi of the collateral key as follows:



1. P proves
(
KDLh {ai} ∨ KDLh {ai/g}

)
. As

noted in Section 3.2, an efficient proof can be
constructed for this boolean formula.

2. P computes A = (a0)2
0 ·(a1)2

1 ·. . .·(ak−1)2
k−1

.
Note that A = gsehR, where R =

∑
2iri.

3. P proves KDLh {A/ye} to V using knowledge
of R.

The commitment scheme used in Protocol 1 is well-known
to be complete, sound and zero-knowledge (see [30]).

7 One Round of Trace-Deterring Mixing

This section introduces a protocol to perform one round
of trace-deterring mixing (TDM). In TDM, a mix server
takes as input a commitment to a bit b of its collateral key
and a list of ElGamal ciphertexts. The server re-encrypts
and mixes this list according to a permutation chosen from
the set T0 if b = 0 or from the set T1 if b = 1. The
sets T0 and T1 are defined according the the TD-partition
({Id}, C, T∗) of Section 5. Finally, the server outputs the
permuted list and proves to an honest verifier that it ex-
ecuted the TDM protocol correctly. Since any input-to-
output trace discloses the secret bit, the administrator of the
mix server is deterred from leaking any information about
the permutation to a third party.

Let 0 ≤ j < n and let L0 = [(Gj ,Mj)] be an input
batch to a mix server. We denote an instance of TDM as
TDM (y, bi, L0), where y is the public key mix server e
uses to encrypt and re-encrypt all the incoming messages.
The protocol is as follows:

Protocol 2. Trace-Deterring-Mixing TDM (y, bi, L0)

1. The mix server e chooses a permutation πi uniformly
at random from T . The mix server computes L1 =
MIX πi

(L0) and outputs L1.
2. The server outputs a list L2 defined as follows:

• If bi = 0, the server defines L2 = MIX Id(L1).
• If bi = 1, the server defines L2 = MIX ν(L1),

where ν is the shift permutation defined in Sec-
tion 5.

3. The server computes L3 = MIX π−1
i

(L2) and outputs
L3.

Soundness. We prove first that the protocol TDM is sound.
More precisely, we prove that TDM guarantees that the list
L0 is permuted according to Id when bi = 0 and is permuted
according to a permutation chosen randomly from the set C
of circular permutations when bi = 1.

Note that if bi = 0, we have

L3 = MIX π−1
i

(
MIX Id(MIX πi

(L0))
)

and thus L3 = MIX Id(L0). In other words, the list L3 con-
sists of re-encryptions of the elements of the list L0 without
any modification to their order. If bi = 1, then

L3 = MIX π−1
i

(
MIX ν(MIX πi

(L0))
)
.

By Proposition 3, we know that π−1
i ◦ ν ◦ πi is a circular

permutation. This shows that if the protocol is executed
correctly, the list L0 is permuted according to Id when
bi = 0 and is permuted according to a permutation chosen
randomly from the set C of circular permutations when
bi = 1.

The mix (the prover P) must next prove to a verifier V
that it executed the TDM protocol correctly. The proof
proceeds as follows:

Protocol 3. Generating a proof of correct execution of
TDM

1. To prove correct operation in steps 1 and 3 of the TDM
protocol, P first proves to V the correctness of the mix-
ing:

PVM {L0 � L1} and PVM {L3 � L2} .

P then proves to V that the mix that transforms L0 into
L1 (step 1) is equivalent to the mix that transforms L3

into L2 (step 3). This proof is given by running

PEM { (L0 � L1) = (L3 � L2) }

2. P proves to V correct operation in step 2 as follows.
Recall from Section 6 that the server’s commitment to
the bit bi is a value ai = gbihri . let L1 = [(Gj ,Mj)]
and L2 = [(G′

j ,M
′
j)] denote the elements of the lists

L1 and L2 (for 0 ≤ j < n). The server must prove
that:

• either bi = 0 (i.e. ai = hri) and the ciphertext
(G′

j ,M
′
j) is a re-encryption of (Gj ,Mj) for j =

0, . . . , n− 1,

• or bi = 1 (i.e. ai = ghri) and the ciphertext
(G′

j+1,M
′
j+1) is a re-encryption of (Gj ,Mj) for

j = 0, . . . , n − 1 (the list was shifted). Note
that in the notation (G′

j+1,M
′
j+1), the subscript

indices are taken modulo n. In other words, with
a slight abuse of notation, we let (G′

n,M ′
n) =

(G′
0,M

′
0).

Formally, let

F0 =
∧

0≤j<n

PCR
{
(Gj ,Mj)� (G′

j ,M
′
j)

}

F1 =
∧

0≤j<n

PCR
{
(Gj ,Mj)� (G′

j+1,M
′
j+1)

}



P proves to V the following formula:
(
KDLh {ai} ∧ F0

)
∨

(
KDLh {ai/g} ∧ F1

)
.

As noted in Section 3.2, an efficient proof can be con-
structed for this boolean formula.

This protocol can be converted into a noninteractive ver-
sion in the random oracle model by using the Fiat-Shamir
heuristic [15].

The completeness, soundness and zero-knowledge of
protocol 3 follow directly from the corresponding properties
of the well-known building blocks that make up the proto-
col.

Computational complexity of the TDM protocol. Let n
denote the number of ciphertext inputs (i.e., the number of
elements in the list L0):

• The cost of Steps 1 and 3 of the TDM protocol (with
the accompanying proof of correctness), is the cost
of two verifiable mixings and one proof of equiva-
lent mixing: 18n modular exponentiations for both the
prover and the verifier.

• The cost of Step 2 of the protocol is the cost of re-
encrypting n elements for the prover (which is 2n
modular exponentiations) plus the cost of the proof
for the boolean formula. Using the technique of [5],
the computational cost of proving the boolean formula
comes to 4n + 3 modular exponentiations for P and
4n + 4 modular exponentiations for V .

The total computational complexity of the TDM protocol is
thus 24n modular exponentiations for the prover P and 22n
modular exponentiations for the verifier V .

8 A Trace-Deterring Mix Network

In this section, we discuss how to construct a complete
trace-deterring mix network using as a building block the
TDM protocol of Section 7. Our trace-deterring tech-
niques are compatible with the standard construction of mix
networks, but add a new property which discourages mix
administrators from disclosing input-to-output message cor-
respondences.

As discussed in Section 4, a mix server must perform
a sequence of TD-Mixing operations over a batch of in-
put messages, each corresponding to one bit of its collat-
eral secret key. If all these TD-Mixings are executed con-
secutively, the mix server can disclose to a third party the
input of a message to the first TD-Mixing and its output
of the last TD-Mixing, without revealing any of its secret
bits in-between. To prevent this attack, we propose a loop

construction of a mix cascade. A cascade is composed of
multiple mix servers, each belonging to a different organi-
zation. A batch of messages flows through the cascade, and
then goes back to the head of the cascade to start another
round. Each round commits to one bit of these mix servers’
collateral keys.

Figure 2 illustrates this construction. In the figure, the
mix cascade performs k loops on an input batch, where k
is the number of bits in the collateral key of a mix server.
The m servers permute the batch according to the bit string
11 . . . 0 in the first loop and 10 . . . 1 in the second loop, and
so on, until all k strings are used. Note that the m mix
servers are assumed to belong to different organizations.
Their reluctance to reveal their secret bits to one another
prevents them from colluding.

1 2 m

… loop k times …

1         1     ….        0
1         0     ….        1

start

0         0     ….        0 end
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Figure 2. A Trace-Deterring mix cascade.

We describe a trace-deterring mix-cascade protocol built
on Abe’s scheme [1]. In an initial setup step, every mix
server on the cascade commits to the bits of its collateral
key. For every batch of input messages, the mix cascade
operates in two stages: 1) re-encryption and mixing; and 2)
decryption of the final outputs. During the first stage, the
mix cascade re-encrypts the ciphertext elements of the in-
put batch, permutes them according to the TDM protocol,
and proves correct execution of the TDM protocol as dis-
cussed in Section 7. In the decryption stage, all mixes in the
cascade collaborate to decrypt the output batch and forward
these decryptions to the receivers.

In the formal description of the protocol, given below,
we let m denote the number of servers in the cascade. Let
y denote the public key of the mix network (used to encrypt
and re-encrypt inputs). The corresponding decryption key



x is shared among all mix servers, such that a quorum of
servers can decrypt. In addition, we assume that each mix
server e has a secret collateral key se and we let ye denote
the corresponding public key. The collateral key se can be
the same as the server’s share of the key x, but it need not
be the same (recall that our scheme allows a mix server to
use any secret key as a collateral key).

Protocol 4. TD mix cascade

System initialization. The mix servers jointly generate
an ElGamal private/public key pair (x, y = gx) using
a threshold protocol [18]. The public key y is known
to all servers. The servers also hold shares of the se-
cret key x, in such a way that a quorum of servers can
decrypt.

Every mix server e in the cascade then runs
KC (g, q, y) to generate a collateral public key ye and
commit to the corresponding secret key se of k bits
with a sequence of commitments [ai = gbihri ], where
1 ≤ i ≤ k.

Creation of an input batch. A user randomly draws a

value γj
R← Z

∗
q and posts an encryption of her message

Mj to the bulletin board:

(G0,j ,M0,j) = (gγj ,Mjy
γj )

After collecting n messages on the bulletin board, the
mix cascade starts to process the batch.

Re-encryption and mixing.

1. In the �th round of the cascade (for 0 ≤ l < k),
mix server e processes its inbound message batch
[(G�m+e−1,j ,M�m+e−1,j)] by running

TDM (y, b�,e, [(G�m+e−1,j ,M�m+e−1,j)])

and proves correct execution of the protocol
TDM as described in Section 7.

2. After the output batch [(G�m,j ,M�m,j)] is pro-
duced, mix server m sends the batch back to the
head of the cascade if � < k.

Decryption. A quorum of mix servers jointly decrypt the
final output batch and output the corresponding plain-
texts.

Performance improvements. To lower the computational
cost, a TD-mix cascade need not necessarily mix its inputs
exactly as many times as there are bits in the collateral keys
of the mix servers. For every message batch, the cascade
may instead use only λ randomly chosen bits of the collat-
eral keys of mix servers. The value λ must be large enough

to constitute a credible deterrent to individual mix servers’
misbehavior.

All the usual techniques commonly used to speed-up the
operation of re-encryption mix networks can also be used in
our trace-deterring mixnet. For example, mix servers may
pre-compute the values (gγi,j , yγi,j ) used to re-encrypt ci-
phertexts for all bits 0 ≤ i < k.

Discussion of threats. We construct a mix cascade in a
way which interleaves mix servers of different organiza-
tions. This prevents a dishonest mix server from unilater-
ally exposing the end-to-end correspondence of a message
across all the permutations it performed without leaking
out any correspondences in-between. Specifically, a mix
server cannot link an input message to its first permutation
to its output from the server’s last permutation because the
linkage of that message between any of two permutations
it performs is interrupted by other mix servers’ permuta-
tions. However, if all mix servers of a cascade collude, they
can offer this end-to-end correspondence to a third party.
Our TD mix network deters global trace collusion because
a conspiring mix server has to reveal the output of the mes-
sage under trace to its neighbor, amounting to disclosure of
a secret bit. Therefore, the cost of such collusion is to reveal
one’s secret collateral key to another party.

9 Conclusion

We have presented a deterrent to the voluntary selective
disclosure of mix correspondences. This method improves
upon previous efforts in three significant ways: trace disclo-
sures become provable, the disclosure penalty is customiz-
able, and the anonymity set is large. We introduce the no-
tions of trace-deterring permutations, formalize the trace-
deterring mixing protocol and examine its deployment in a
mix network.
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A Circular Permutations

Proposition 4. Let (T0, T1, T∗) be a trace-deterring (TD)
partition as defined in Section 5. If T0 = {Id}, then T1 ⊆ C,
where C denotes the subsets of permutations on n elements
that are circular.

Proof. Let π ∈ T1. We must show that π is a circular per-
mutation. The proof is by contradiction. Assume that π has
a cycle C of length α < n. Then Id(C) = π(C) = C and
therefore (T0, T1, T∗) cannot be a TD-partition.

Proposition 5. Let T denote the set of all permutations on
n elements and let C ⊂ T denote the subset of circular
permutations on n elements (see Definition 2). Let ν denote
the shift permutation on n elements. We have C = {π−1 ◦
ν ◦ π | π ∈ T }.

The proof follows from the two following lemmas:

Lemma 6. For all π ∈ T , the permutation π ◦ ν ◦ π−1 is a
circular permutation.

Proof. The proof is by contradiction. Let us assume that the
successive images of the input 1 by the permutation π ◦ ν ◦
π−1 are not all different. Then there exist i, j ∈ {1, . . . , n}
such that i �= j and

(π ◦ ν ◦ π−1)(i)(1) = (π ◦ ν ◦ π−1)(j)(1)

But (π◦ν◦π−1)(i) = π◦(ν(i))◦π−1 and so the equation
above can be rewritten as

π ◦ (ν(i)) ◦ π−1(1) = π ◦ (ν(j)) ◦ π−1(1).

It follows that (ν(i))(π−1(1)) = (ν(j))(π−1(1)), which is
a contradiction since ν is a circular permutation.

Lemma 7. Let σ ∈ C be a circular permutation. There
exists π ∈ T such that σ = π ◦ ν ◦ π−1.

Proof. The proof is constructive. Let σ be a circular per-
mutation on n elements. For i ∈ {1, . . . , n}, let us define
π(i) = σ(i)(1). We must prove that π thus defined is a
permutation and that σ = π ◦ ν ◦ π−1.

We show first that π is a permutation. Let i, j ∈
{1, . . . , n} such that i �= j. Since σ is a circular permuta-
tion, we have σ(i)(1) �= σ(j)(1), and therefore π(i) �= π(j).
This shows that π is a bijection, and therefore a permutation
of the set {1, . . . , n}.

Next, we show that σ = π ◦ ν ◦ π−1. Observe that for
i ∈ {1, . . . , n}, we have

σ ◦ π(i) = σ ◦ σ(i)(1) = σ(i+1)(1) = π(i + 1) = π ◦ ν(i)

and therefore σ ◦ π = π ◦ ν. It follows that σ = π ◦ ν ◦
π−1.


