
ISIT 2002, Lausanne, Switzerland, June 30 – July 5, 2002

Fractal Hash Sequence Representation and Traversal

Markus Jakobsson
1

RSA Laboratories
Bedford, MA 01730

e-mail: mjakobsson@rsasecurity.com

Abstract — We introduce a novel amortization tech-

nique for computation of consecutive preimages of

hash chains, given knowledge of the seed. While

all previously known techniques have a memory-

times-computational complexity of O(n) per chain el-

ement, the complexity of our technique can be up-

per bounded at O(log2 n), making it a useful primitive

for low-cost applications such as authentication, sig-

natures and micro-payments.

I. Introduction

With a trend towards smaller and smaller computers, there
is a need for more efficient cryptographic methods. The hash
chain is an elegant and versatile low-cost technique with ap-
plications ranging from renewal of certificates [4], to auctions
[10], micro-payments [8] and authentication [5, 6]. All these
applications have in common a need to generate consecutive
hash pre-images (given some secret seed) – whether the release
of such a value means that a public key has been re-certified;
the bid increased; a payment performed; or a new short-term
authentication key has been made available.

Let us consider one of these applications in more detail:
The work on authentication [5, 6] was performed with au-
thentication for smart dust [7] in mind. This terms refers to
very small computational devices covering a large area, often
for purposes of surveillance, whether seismic or military. We
refer to [1, 11] for a more exhaustive list of applications. It
is clearly the case that one wishes to conserve both computa-
tional and memory resources in such an application. However,
traditional techniques of hash chain generation have complex-
ity O(n), counting the product of the amount of computa-
tion per output, and the required storage. In particular, they
require either all values to be stored; computed by iterated
hashing from the seed; or a straighforward hybrid of these.
This largely rules out the inexpensive deployment of smart
dust, and makes other applications costly as well.

We introduce a novel method with a complexity of only
O(log2 n). Our method is directly applicable to authentica-
tion on “limited devices”, and more generally, to light-weight
applications involving the use of hash chains. In particular,
our algorithm requires dlog2 ne hash function applications per
output element, and uses dlog2 ne + 1 memory cells, where
each cell stores one hash chain value along with some short
state information. For example, if the hash chain has length
232, and SHA [9] is the hash function of choice, then each
one of the 33 storage cells has size 2log2 n + 160 = 224 bits,
totalling 924 bytes of storage. If we output one hash value per
second, such a chain would last for more than 68 years.

Our technique can be illustrated by the following exam-
ple. Say that we can store three values (which we refer to
as “pebbles”) to represent the hash chain. Traditional tech-
niques would place pebbles (i.e., store values) at the endpoint

1Intellectual rights to this work held by the author.

(whose position is n for a chain of length n), at 2n/3, and
at n/3. The computation needed to generate the next value
would be between 0 and n/3−1. Instead, we put a pebble at n,
at n/2, and at n/4. The first n/4 outputs would cost between
0 and n/4 − 1 to compute (given the pebble at n/4), and so
would the next n/4 (given the pebble at the midpoint). Since
the pebble at n/4 is useless once this point has been reached,
we could instead move this pebble to position n, and for each
available cycle (when we do not use all n/4 − 1 cycles), move
it “downstream” towards the point 3n/4. It will arrive there
before we output the value at n/2. Thus, given that we now
have a pebble at 3n/4, and one at n, the remaining half of
the traversal space will also have a maximum computational
cost of n/4 − 1 per element. Given more pebbles, this can be
further reduced.

Source code corresponding to the algorithm is available on
the author’s website [3], along with the full paper.

Acknowledgments

Many thanks to Ari Juels for help simplifying the algorithm,
and to Gustav Hast, Adrian Perrig, Tal Rabin and Leo Reyzin
for helpful suggestions and valuable discussions. Thanks to
Helger Lipmaa for implementing the algorithm.

References

[1] ”Desirable Dust”, A survey about the real-time economy, The
Economist, Feb 2 ’02, pp. 8–9.

[2] G. Itkis and L. Reyzin, ”Forward-Secure Signatures with Opti-
mal Signing and Verifying,” Crypto ’01, pp. 332–354.

[3] M. Jakobsson, Full paper and implementation,
www.markus-jakobsson.com

[4] S. Micali, ”Efficient Certificate Revocation,” Proceedings of
RSA Conference 1997, and U.S. Patent No. 5,666,416.

[5] A. Perrig, R. Canetti, D. Song, and D. Tygar, ”Efficient and Se-
cure Source Authentication for Multicast,” Proceedings of Net-
work and Distributed System Security Symposium NDSS 2001,
February 2001.

[6] A. Perrig, R. Canetti, D. Song, and D. Tygar, ”TESLA: Multi-
cast Source Authentication Transform”, Proposed IRTF draft,
http://paris.cs.berkeley.edu/ ˜ perrig/

[7] K. S. J. Pister, J. M. Kahn and B. E. Boser, ”Smart Dust:
Wireless Networks of Millimeter-Scale Sensor Nodes. High-
light Article in 1999 Electronics Research Laboratory Research
Summary.”, 1999. See http://robotics.eecs.berkeley.edu/ ˜
pister/SmartDust/

[8] R. Rivest and A. Shamir, “PayWord and MicroMint–Two Sim-
ple Micropayment Schemes,” CryptoBytes, volume 2, number
1 (RSA Laboratories, Spring 1996), 7–11.

[9] FIPS PUB 180-1, ”Secure Hash Standard, SHA-1,”
www.itl.nist.gov/fipspubs/fip180-1.htm

[10] S. Stubblebine and P. Syverson, ”Fair On-line Auctions With-
out Special Trusted Parties,” Financial Cryptography ’01.

[11] ”Where’s the smart money?”, Science and Technology, The
Economist, Feb 9 ’02, pp. 69–70.


