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Abstract — We introduce a novel amortization tech-

nique for computation of consecutive preimages of

hash chains, given knowledge of the seed. While

all previously known techniques have a memory-

times-computational complexity of O(n) per chain el-

ement, the complexity of our technique can be up-

per bounded at O(log2 n), making it a useful primitive

for low-cost applications such as authentication, sig-

natures and micro-payments.

I. Introduction

With a trend towards smaller and smaller computers, there
is a need for more efficient cryptographic methods. The hash
chain is an elegant and versatile low-cost technique with ap-
plications ranging from renewal of certificates [4], to auctions
[10], micro-payments [8] and authentication [5, 6]. All these
applications have in common a need to generate consecutive
hash pre-images (given some secret seed) – whether the release
of such a value means that a public key has been re-certified;
the bid increased; a payment performed; or a new short-term
authentication key has been made available.

Let us consider one of these applications in more detail:
The work on authentication [5, 6] was performed with au-
thentication for smart dust [7] in mind. This terms refers to
very small computational devices covering a large area, often
for purposes of surveillance, whether seismic or military. We
refer to [1, 11] for a more exhaustive list of applications. It
is clearly the case that one wishes to conserve both computa-
tional and memory resources in such an application. However,
traditional techniques of hash chain generation have complex-
ity O(n), counting the product of the amount of computa-
tion per output, and the required storage. In particular, they
require either all values to be stored; computed by iterated
hashing from the seed; or a straighforward hybrid of these.
This largely rules out the inexpensive deployment of smart
dust, and makes other applications costly as well.

We introduce a novel method with a complexity of only
O(log2 n). Our method is directly applicable to authentica-
tion on “limited devices”, and more generally, to light-weight
applications involving the use of hash chains. In particular,
our algorithm requires dlog2 ne hash function applications per
output element, and uses dlog2 ne + 1 memory cells, where
each cell stores one hash chain value along with some short
state information. For example, if the hash chain has length
232, and SHA [9] is the hash function of choice, then each
one of the 33 storage cells has size 2log2 n + 160 = 224 bits,
totalling 924 bytes of storage. If we output one hash value per
second, such a chain would last for more than 68 years.

Our technique can be illustrated by the following exam-
ple. Say that we can store three values (which we refer to
as “pebbles”) to represent the hash chain. Traditional tech-
niques would place pebbles (i.e., store values) at the endpoint
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(whose position is n for a chain of length n), at 2n/3, and
at n/3. The computation needed to generate the next value
would be between 0 and n/3−1. Instead, we put a pebble at n,
at n/2, and at n/4. The first n/4 outputs would cost between
0 and n/4 − 1 to compute (given the pebble at n/4), and so
would the next n/4 (given the pebble at the midpoint). Since
the pebble at n/4 is useless once this point has been reached,
we could instead move this pebble to position n, and for each
available cycle (when we do not use all n/4 − 1 cycles), move
it “downstream” towards the point 3n/4. It will arrive there
before we output the value at n/2. Thus, given that we now
have a pebble at 3n/4, and one at n, the remaining half of
the traversal space will also have a maximum computational
cost of n/4 − 1 per element. Given more pebbles, this can be
further reduced.

Source code corresponding to the algorithm is available on
the author’s website [3], along with the full paper.
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