How to Turn Loaded Dice into Fair Coins

Ari Juels* Markus Jakobsson® Elizabeth Shriverf Bruce K. Hillyer!

July 6, 1998

Abstract

We present a new technique for simulating fair coin flips using a biased, stationary source
of randomness. Sequences of random numbers are of pervasive importance in cryptography and
vital to many other computing applications. Many sources of randomness, such as radioactive or
quantum mechanical sources, possess the property of stationarity. In other words, they produce
independent outputs over fixed probability distributions. The output of such sources may be
viewed as the result of rolling a biased or loaded die. While a biased die may be a good source
of entropy, many applications require input in the form of unbiased bits, rather than biased
ones. For this reason, almost fifty years ago, von Neumann presented a now well known and
extensively investigated technique for using a biased coin to simulate a fair coin. We describe
a new generalization of von Neumann’s algorithm distinguished by its high level of practicality
and amenability to analysis. In contrast to previous efforts, we are able to prove our algorithm
optimally efficient, in the sense that it simulates the maximum possible number of fair coin flips
for a given number of die rolls. In fact, we are able to prove that in an asymptotic sense our
algorithm extracts the full entropy of its input. Moreover, we demonstrate experimentally that
our algorithm achieves a high level of computational and output efficiency in a practical setting.

Key words: cryptography, generator, random number generator, randomness.

*RSA Laboratories, RSA Data Security. E-mail: ari@rsa.com
TInformation Sciences Research Ctr., Bell Labs. E-mail:{markusj,shriver,bruce}@research.bell-labs.com

1 Introduction

Countless applications in cryptography, stochastic simulation, search heuristics, and game playing
rely on the use of sequences of random numbers. As truly random numbers are a scarce resource,
it is common practice to derive such sequences from pseudo-random number generators (PRNGs).
A PRNG is an algorithm which takes a truly random input and “stretches” it to produce a long
sequence of numbers bearing an appearance of randomness. There is a large body of literature on
the design and properties of PRNGs, e.g., [2, 3, 10, 11, 13, 15, 15, 18, 19, 20, 25, 30, 31]. Much less
study is devoted, though, to the physical generation and processing of the random input seeds that
fuel these PRNGs. It is common practice in the literature to obtain a random seed by invoking a
semi-mythical “uniform random source”.

Practitioners have called into service a variety of physical sources of randomness. These include
system clocks, radioactive sources [12], quantum mechanical effects in semiconductor devices [1, 22],
magnetic disk timings [17], keyboard and mouse timings [23], and lava lamps [7], among others.
Timings of human interaction with a keyboard or mouse are currently the most common source
of random seeds for cryptographic applications on PCs. After a sufficient amount of such timing
data is gathered, it is generally hashed down to a 128-bit or 160-bit seed. This method relies for its
security guarantees on unproven or unprovable assumptions about the entropy generated by human
users [6] and the robustness of hash functions as entropy extractors.

Some of these sources of randomness, such as radioactive sources and quantum mechanical
sources may yield data from probability distributions that are stationary. In other words, the
output of these sources does not change over time and does not depend on previous outputs. Even
if a source is stationary, though, it generally has a bias. In other words, the source does not give
unbiased bits as direct output. Many applications, especially in cryptography, rely on sequences of
unbiased bits. It is therefore quite important to be able to extract unbiased bits efficiently from a
stationary source with unknown bias.

Suppose that a reading obtained from stationary source of randomness D can be equal to any
one of m different values, but that the probability of obtaining any one of these values is unknown.
Such a source of randomness can be thought of as a die D with m faces: taking readings from the
random source is like rolling the die D. The m faces of D are not necessarily equally probable. In
other words, the die D may be loaded. Our aim in this paper is to use a given number of rolls of
D to simulate a maximal number of fair coin flips.

1.1 Previous work

Von Neumann [32] offers perhaps the earliest written reference to the problem of simulating unbiased
coin flips using a biased coin. He describes the following trick from the folklore. Flip the biased
coin twice. If it comes up HT, output an H. If it comes up TH, output a T. Otherwise, start over.
This method will simulate the output of an unbiased coin irrespective of the bias of the coin used
in the simulation. The tradeoff is this: the stronger the bias of the coin providing input to the
simulation, the lower its entropy, and the longer the simulation will take on average to produce
output. Exploring extensions of von Neumann’s technique is a favorite classroom exercise, and has
formed the basis of a number of research efforts.

One line of research treats generalizations of von Neumann’s method by which it is possible
to obtain unbiased coin flips from biased Markov Chains (MCs). These MCs generally assume
the following form. Fach state in the MC has two outgoing transitions with possibly unequal
probabilities. When one of these transitions is followed, a 1 is output; when the other is followed,
a 0 is output. Note that biased die can be modeled fairly closely by such a MC.

Elias [8] is perhaps the first to propose a means of extracting unbiased bits from an MC of
this sort. His construction is nearly optimal in the sense that its output entropy approaches that
of the underlying MC. The generality of Elias’s algorithm leads to a different type of inefficiency,
however. The expected number of steps for which the MC must be run before the first piece of
output is obtained is potentially more than the number of states in the chain. Blum [3] proposes
an algorithm in which the expected number of steps to obtain output bits is linear in the size of
the underlying MC, but the entropy of the output is lower than that in the construction of Elias.
Blum’s algorithm is again, however, very general.

Stout and Warren [28] propose an algorithm that, while not representing a broad generalization
of von Neumann’s model, improves substantially on its efficiency. They build on earlier work in this
area, including most notably that of Hoeffding and Simons [14]. The work of Stout and Warren
may in fact be viewed as complementary to that which we present here. To simplify somewhat,
Stout and Warren aim to simulate a fixed number of fair coin flips using as few rolls of a biased
die as possible. In contrast, our aim, given a fixed number of rolls of a biased die, is to extract as
many fair coin flips as possible. Although these two problems would appear to be nearly identical,
they in fact turn out to be quite different. This is evidenced by the following surprising fact. We
prove that our algorithm is optimal in terms of the expected number of output bits it yields. Stout
and Warren, on the other hand, prove that for their complementary formulation of the problem,
there does not exist any optimal algorithm. Moreover, the algorithm of Stout and Warren, while
conceptual simple, is difficult to analyze. Nor is it clear how their algorithm might be implemented
in a computationally efficient manner.

Perhaps most similar in algorithmic flavor to our work is that of Dijkstra. In a short paper [5],
he shows how to use a biased coin (or, alternatively, a biased die) to simulate a fair die with a given
number of faces. He describes, for instance, how to simulate a 37-sided die as follows. We flip the
biased coin 37 times, and then rotate the resulting sequence to the left until its minimum lexographic
value is achieved. Assuming a non-trivial flip sequence, the number of rotations yields the roll of the
simulated die. (This works because 37 is prime, but extensions to composite numbers are possible.)
The technique described in our paper involves not just rotations, but also permutations, and so
may be regarded as a natural extension of Dijkstra’s observation.

Related areas of research include that of Feldman et al. [9]. In their exploration of Turing
machines, Feldman et al. seek a small set of biased coins capable of efficiently simulating any
k-sided die (where k is polynomial in the input length of the Turing machine). They show that for
the special case of simulating one n-sided die via O(logn) coin flips, only two types of rationally
biased coins are required. Extensions of their work include the papers of Uehara [29] and Itoh [16].

Also of relevance is the work of Santha and Vazirani [24], who show how to use a weak ran-
dom source of bits to produce bit strings which are not identical to, but indistinguishable from
perfectly random ones. Their techniques are based on the simple trick of XORing together weakly
random sequences. In a follow-up to this work, Boppana and Narayanan [4] examine the expected
performance of such weak sources.

1.2 Our result

In this paper, we present a new extension of the technique of von Neumann [32] for simulating
unbiased coin flips using a biased coin. Our algorithm makes use of a die D with unknown bias to
simulate flips of an unbiased coin, and is thus in the same vein as the algorithms of Dijkstra [5] and
Stout and Warren [28]. As explained above, however, these previous algorithms simulate a fixed
uniform distribution using a variable number of inputs. In contrast, our algorithm takes a fixed
number of biased inputs and simulates a variable number of fair coin flips. By approaching the task

of unbiased simulation from this perspective, we are able to construct an algorithm more amenable
to both practical implementation and theoretic analysis than these previous algorithms. Given any
fixed number of rolls of a biased die D, we are able to prove that our algorithm is optimally efficient
in the sense that it achieves the maximum possible output entropy. Additionally, we prove that in
an asymptotic sense, our algorithm extracts the full entropy of D. Finally, we present experiments
showing that, with careful implementation, our algorithm achieves a high degree of computational
and output efficiency in a practical setting.

1.3 Organization of the paper

The remainder of this paper is organized as follows. In section 2, we give definitions, and describe
our fair bit extractor). In section 3 we present two theorems showing, in two different senses,
that () achieves optimal output efficiency. In section 4 we present experiments conducted with
an implemented version of algorithm (). We conclude in section 5 by suggesting some avenues for
further research. This paper also includes two appendices. In Appendix A, we give proofs of the
two theorems presented in section 3. In Appendix B, we give a pseudo-code implementation of our
proposed fair bit extractor Q.

2 Our algorithm

2.1 Definitions

We define a bit extractor to be an algorithm W that does the following. W takes as input a sequence
X = {X]1], X[2],...,X][n]} of n elements in R, where n is any positive integer. W outputs a
sequence by, bo, ..., by of bits, where k is an integer that varies as a function of X. We denote the
output of W on input X by W (X). Hence W may be viewed as a function W : R" — {0,1}*. Let
D be a fixed probability distribution over a finite set of elements in . As explained above, we may
think of D as a die: rolling this die is equivalent to drawing an element from the distribution D.
We shall let D™ denote the probability distribution over n rolls of the die D, i.e., the probability
distribution from which a sequence X of n rolls is drawn.

We define a fair bit extractor to be one which takes inputs from a fixed distribution and outputs
bitstrings in which bits are independent and unbiased. In other words, a bit extractor is fair if
for any n, any fixed probability distribution D over R, and any pair of bitstrings b and b’ of equal
length, Prxcpn [W(X) = b] = Prxepn[W(X) = b']. Let bitsyy (X) denote the number of bits output
by extractor W on input X. The following definition characterizes optimality in an extractor W.

Definition 1 A fair bit extractor W is said to be optimal if for any n and D, and all extractors W',
Excpnbitsy (X)] > Exepr|bitsy/(X)]. In other words, W outputs a mazimal expected number of
bits over all sequences of n readings.

Let X = {X[1], X[2],...,X[n]} be a sequence of readings drawn from D". We refer to the
number of distinct readings in X less than or equal to X [i] as the rank of X[i], denoted by rank(X[i]).

Example 1 Suppose that the die D yields the output sequence X = {5,10,23,6,10,23}. Then
X[1] =5, X[2] =10, X[3] = 23, X[4] = 6, etc. Here, rank(X[1]) = 1, rank(X[2]) = 3, rank(X[3]) =
4, rank(X[4]) = 2, rank(X[5]) = 3, and rank(X[6]) = 4.

We call p(X) = {rank(X[1]),rank(X[2]),...,rank(X[n])} the rank sequence of X. We denote by
{p(X)} the rank multiset of X. This is the unordered multiset on the set p(X). Finally, we let

frx (i) denote the number (or frequency) of readings in X with rank 4; frx (i) may also be viewed
as the number of occurrences of the integer 7 in p(X) or {p(X)}.

Example 2 Suppose again, as in Example 1, that the die D yields the output sequence X =
{5,10,23,6,10,23}. The rank sequence of X is p(X) = {1,3,4,2,3,4}. Thus, frx(1) =1, frx(2) =
1, frx(3) =2, and frx(4) = 2.

2.2 Algorithm description

We shall now describe our algorithm @) for extracting fair bits from a biased die. We shall construct
Q as the composition of two algorithms, called (1 and (2. The algorithm)1 will make use of the
biased die D to simulate an unbiased die U. The algorithm)2 will take a roll of the simulated
unbiased die U and convert it into an unbiased bitstring. Hence, the algorithm @ = Q9 o Q1 will
take a sequence of readings X from the biased die D and convert it into an unbiased bitstring.

Algorithm (Q;: Using biased die D to simulate unbiased die U. The basis of von Neu-
mann’s algorithm is the following observation. Given that an H and a T occur in successive flips,
both orderings of the H and the T are equally likely, i.e., the probability that an HT occurs is equal
to the probability that a TH occurs. To construct)1, we shall extend application of this principle
from a biased coin to a biased die. Suppose the only information we know is that n rolls of the die
D have yielded a set of readings X with the rank multiset {p(X)}. Observe then that any ordering
on {p(X)} is a possible rank sequence p(X) for X.

A priori, all such rank sequences p(X) are equally probable. E.g., given that {p(X)} =
{1,1,2,3}, it is equally likely that p(X) = {3,2,1,1} as it is that p(X) = {1,2,1,3} as it is
that p(X) ={1,2,3,1}, etc.

Using this observation, we can simulate an unbiased die as follows. Given a sequence X, we
construct a list of all possible orderings on the multiset {p(X)} in numerical order, i.e., in ascending
order of integer value. Observe that the number of elements in this list is equal to n!/ [](frx (:)!); let
us call this number S. If p(X) is the Rth element in this list of orderings on {p(X)}, we output R.
(In other words, we output the rank of p(X) in {p(X)}.) The output R may be seen to represent
the result of a single roll of an unbiased die with S sides labeled 1,2,3,...,5. We shall call this
unbiased die U.

Example 3 Suppose that we obtain the sequence of readings X = {10,5,15} on three rolls of the
die D. This translates into the rank sequence p(X) = {2,1,3}. The corresponding rank multiset
{p(X)} ={1,2,3} has 3! = 6 possible orderings. In numerical order, these are: 123, 132, 213, 231,
312, 321. Since the rank sequence p(X) comes 3rd in this list, our sequence X corresponds to a
roll of R = 3 on an unbiased die U with S = 6 sides labeled {1,2,...,6}.

Algorithm ()3: Translating unbiased die U into an unbiased bitstring We now describe
the algorithm Q2 that translates a roll R of the unbiased die U into an unbiased bitstring. The
difficulty here lies in resolving the fact that S is not, in general, a power of 2, so that an unbiased
mapping from a die roll to bitstrings of a fixed length is not possible. Instead, we begin by
partitioning the sides {1,2,...,S5} of the die U into sets whose sizes are powers of 2. In particular,
we partition the sides of U into sets Ap, As,..., A such that the set sizes |A1],|Az|,...,|A;| are
unique, decreasing powers of 2. This is equivalent to the following. Let sgsg_1...s150 be a binary
representation of S. Moving from left to right, for each s, = 1, we create a distinct set A; €
{1,2,...,S5} such that |4;| = 2¢ thus, j represents the number of bits in sgsi_1...s150 equal to

1. Although the faces of U may be assigned arbitrarily to the sets {A;}, it is convenient to assign
them in numerical order, i.e., 1 € Ay,...,5 € A;.

To complete the construction of ()2, we must assign a mapping from each set A; to a set of
bitstrings. Recall that for each set A;, |4;] = 2¢ for some c¢. The algorithm @9, then, maps
the elements of A; to the set {0,1}¢ of bitstrings in a one-to-one fashion. This mapping Q2 :
A; — {0,1}¢ can be ordered arbitrarily, but it is convenient to make it increasing, i.e., to map
larger valued faces of U to larger valued bitstrings. This completes our definition of the algorithm
Q2 :{1,2,...,S} — {0,1}*. Note that Q2 will map different sides of U to bitstrings of differing
lengths when S is not a power of 2. Note also that if S is odd, then one sequence produces no
output, i.e., ¢ = 0 for the set A;.

Example 4 Let us continue our previous example in which we obtained from the die D the se-
quence of readings X = {10,5,15}. Recall that the algorithm (), mapped this sequence X to a roll
of R = 3 on an unbiased die U with 6 sides. In the construction of Q9, the sides {1,2,3,4,5,6} of
U are partitioned into sets A; and Ay such that |A;| = 22 = 4 and |As| = 2! = 2. In particular,
Ay = {1,2,3,4} and Ay = {5,6}. The algorithm Q9 is then defined by the following mapping.
Q2:{1,2,3,4} — {00’,°01°,10’,¢11’}, and Q9 : {5,6} — {0’,‘1"}.

Hence, Q2(R) = Q2(3) = ‘10’. In consequence, the bit extractor @ yields as output on X =
{10,5,15} the bitstring Q(X) = Q2(Q1(X)) = ‘10"

We frequently assume in this paper that the die D has a finite number of sides. This assumption
simplifies our proofs in the next section. Note, however, that our algorithm) may be used equally
well for a die D with an infinite number of sides, i.e., a source of randomness which yields any one
of an infinite number of values. The proposed efficient implementation of () which we give in the
next subsection is also flexible in this sense.

2.3 Efficient implementation

The longer the sequence X is, the more efficient @) is (as Theorem 2 will suggest). Hence the
approach of constructing @1 by explicitly listing all possible orderings on {p(X)} as above is
impractical in a real-world setting. This is because, if we use a sequence long enough for @) to yield
output efficiently, the list of orderings is likely to be too long. If, for example, there are only 20
readings in the set X, the number of elements in the list in question may be as large as 20!, which
is greater than 2.4 x 10'8.

In a practical implementation, therefore, we must compute @1(X) without reference to a table.
One way to achieve this is as follows. We examine the readings in X in sequential order, i.e., in step i
we examine X [i]. Let p;(X) denote the rank set on the truncated sequence { X[i], X [i+1],..., X[n]},
and let rank;(X[i]) denote the rank of X[i] in this truncated sequence. A priori — i.e., given
knowledge of p;(X), but not of rank;(X[i]) — the value rank;(X[i]) will be equal to any of the
elements in p;(X) with equal probability. Hence, a posteriori, we may regard rank;(X[i]) as the
result of rolling an unbiased die U; whose faces consist of the set p;(X). This means that U; is a
die with n — 4 4+ 1 faces, all of which are equally likely. Note, however, that U; may have multiple
faces with the same label, as p;(X) may contain repeats.

Example 5 Suppose that X = {15,10,5,15,5}. Let us consider the die Us. The rank set p(X) =
{3,2,1,3,1}. The rank set p3(X) = {ranks(5),ranks(15),ranks(5)} = {1,2,1}. This means that a
priori, the die Uz has three faces—mnamely those in the set {1,2,1}. The a priori probability of
obtaining a 1 on this die is 2/3, while that of obtaining a 2 is 1/3. Since rank3(X|[3]) = ranks(5) =1,
a posteriori, the actual roll obtained on Us is a 1.

In an algorithm to compute Q1(X), i.e., the roll value R on the full, unbiased die U, we compute
the results of the individual rolls Uy, Us, ..., U, and combine them cumulatively into a single die
roll. Details on how to achieve this, with accompanying pseudo-code, are available in Appendix B.
Computing ()2 in an efficient manner is somewhat more straightforward. Details and pseudo-code
are, again, available in Appendix B.

3 Output efficiency and proper usage

In this section, we provide an analysis of the efficiency of our algorithm (), and then give some
caveats about its proper use.

3.1 Algorithm () is optimal

Recall Definition 1 characterizing optimality in a fair bit extractor. A fair bit extractor W is said
to be optimal if W outputs a maximal expected number of bits over all sequences of n readings.
More formally, W is optimal if for any n and D, and all extractors W', Exepn[bitsyy(X)] >
Exepn[bitsy(X)]. We are able to prove that) is optimal in this sense. This fact is stated in our
main theorem, Theorem 1, which we prove in Appendix A.

Theorem 1 (Main Theorem) The algorithm @Q is an optimal fair bit extractor.

3.2 Asymptotic output efficiency of ()

Theorem 1 states that () does as well as possible in accomplishing the task of extracting entropy
from a die D. We can show that our algorithm is optimal in another sense: the number of output
bits it yields is asymptotic to the Shannon entropy of the input source. To explain this notion fully,
we shall require some preliminaries.

3.2.1 Preliminaries

Our algorithm @ generalizes von Neumann’s technique to simulations involving real-valued prob-
ability distributions. It is well known, however, that even for simulations involving biased coins,
there are algorithms more efficient than von Neumann’s [21]. Our algorithm is among these—in
fact, as we have just proven, it is optimally efficient. Consider a biased coin yielding H with prob-
ability 3/4 and T with probability 1/4. If we flip such a coin four times, our proposed extraction
algorithm will yield 165/128 = 1.29 bits of output on average, while von Neumann’s technique will
yield only 0.75 bits. This is because von Neumann’s technique does not make use of all information
available in the simulation. If the biased coin yields TTHH, for instance, von Neumann’s tech-
nique will produce no output, even though the coin flip sequence may be regarded as containing
information.

It is possible to characterize the full amount of randomness inherent in a random source. The
most common measure is known as the Shannon entropy [26, 27], and is defined as follows.

Definition 2 Let D be a probability distribution over Z*. Then the number of bits of Shannon
entropy of D, denoted by SH(D), is defined to be — Y ;2 D(i)logy D(i), where, by convention,
D(i)log, D(1) = 0 if D(3) = 0.

The Shannon entropy serves as an absolute reference point by which we may gauge the output
efficiency of a bit extractor. We noted that von Neumann’s algorithm is not optimally efficient. Let
C' denote the output of a coin with constant bias p, and C™ denote the distribution on n flips of the
coin C. Let vN(C™) be the expected number of output bits yielded by von Neumann’s algorithm
on the distribution C™. The following fact quantifies the inefficiency of von Neumann’s algorithm.

Fact 1 For an unbiased coin C, vN(C™)/SH(C™) < 1/4.

The algorithm of von Neumann achieves its maximal efficiency when applied to an unbiased coin.
In this case (assuming that n is even), vN(C™")/SH(C™) = 1/4.

In contrast, we can show that the algorithm () presented in this paper extracts nearly all of the
Shannon entropy of a random source. Let bitsg(D") be the expected number of bits output by @
over inputs from D" and let poly(n) denote a quantity which is polynomial in n. Let the symbol
~ denote equality asymptotic in n. In other words, a ~ b if lim,_,,,a/b = 1. We then have the
following theorem, the proof of which is given in Appendix A.

Theorem 2 For any biased die D, bitsg(D") ~ SH(D"™).

3.3 Proper usage of algorithm @)

Although @ outputs unconditionally unbiased bits when applied correctly, it is important to make
careful use of the bit extractor Q). As the following example shows, there are uses of) that may
seem correct on first inspection, but in fact yield biased output.

Example 6 Suppose a user interested in obtaining a single unbiased bit from a die D makes use of
the following algorithm. Take readings X[1], X[2],... from D until a sequence X is obtained such
that Q(X) consists of at least one bit. Then output Q(X) and halt.

Somewhat surprisingly, this algorithm yields biased output. Let us suppose that D is really a
coin, and has two sides numbered 1 and 2. It is easy to see that the described algorithm will halt on
any sequence of the form {1,1,1,...,1,2} and output a ‘0’, and halt on any sequence of the form
{2,2,2,...,2,1} and output a ‘1’. The algorithm will not halt on any other sequence. In particular,
no output will be yielded on sequences of the form {1,1,1,...} or {2,2,2,...}. If D(1) = p and
D(2) =1 —p, it is easy to see that the probability that the described algorithm outputs the bit ‘0’
is p, while the probability of a ‘1’ output is 1 — p. Hence this use of) yields biased output.

In order to ensure that the output of the extractor () is unbiased, the user should provide @)
with a sequence X of fixed length or of length independent of the properties of readings in X.

4 Implementation and experiments

In this section we describe an implementation of algorithm (), and experimental results concerning
the effectiveness of the algorithm in practice.

Pseudo-code for algorithm @ is given in Appendix B. We made a straightforward translation
of this pseudo-code to the C programming language, using the GNU Multiple Precision Arithmetic
Library Edition 2.0.2 (June 1996)! for calculating factorials and the dependent pseudo-code vari-
ables S, L, and F'. The purpose of implementing the code is to investigate whether the algorithm

'See http://www.fsf.org/order /ftp.html to obtain GNU MP source and documentation.

is as effective in practice as the theorems suggest that it should be. In particular, we wish to know
the speed of the algorithm in practice, and we wish to know how many output bits are generated
from a given number of input bits of known bias. The timing experiments were conducted on a
lightly-loaded Sun Ultra-1 computer running the Solaris 2.6 operating system.

We ran experiments on synthetic input data with carefully controlled bias. For these experi-
ments, the input is not truly random, so neither is the output. Nevertheless, we believe that the
computational performance of algorithm () on the synthetic input constructed with a particular
bias is representative of what would be observed on truly random input having a similar bias.

An input reading is a k-bit integer, where k is a parameter of the experiment. We used values of
k from 2 to 63. We construct each synthetic input reading one bit at a time, with the same specified
bias applied independently to each bit. Each bit is generated using one call to the C library built-
in function 1rand48(), which is an improved linear congruential pseudo-random generator (much
better than rand() and random(), which are known to produce highly correlated bits). 1rand48()
returns a uniformly-distributed 32-bit integer. We generate a bit that is 1 with probability p by
seeing whether 1rand48() mod 1/p is zero. The values of p used in the experiments are 1/2, 1/4,
1/8, and 1/16. A batch is a sequence of b readings given as an input to one invocation of the
functions @1 and Q2. We experimented with values of b ranging from 2 to 1000. An experimental
trial first generates an input batch according to parameters k, b, and p, and then executes ()1 and
()2 on that batch. Each experiment runs 100 trials for each setting of the parameter triple {k, b, p}.

The first experiment explores how effective the algorithm is in extracting all the randomness
available in the input. Let nj;, denote the average number of output bits when the input has k
bits per reading, b readings per batch, and each input bit is 1 with probability p. The number of
bits of randomness available in an input batch is given by the Shannon entropy (recall Definition
2). In particular, the probability p determines the entropy per bit, E,. For the tested values of
p=1/2,1/4,1/8, and 1/16, the corresponding bit entropies are approximately 1, 0.81, 0.54, and 0.34
respectively. The number of bits of randomness in an input reading is E, x k, and thus the number
of bits of randomness in an input batch is E, x k x b. In consequence, we define the normalized
efficiency of the algorithm to be ny,p,,/(E, x k xb). Theorem 2 tells us that the normalized efficiency
approaches 1 as b — oo. Figure 1 illustrates the speed at which this convergence occurs in practice.
The graph shows three families of curves. The solid curves for £ = 2 bits per reading show a very
rapid increase to high efficiency. The dotted curves for k = 11 bits per reading require larger batch
sizes to reach efficiencies above 75%. When the input has 63 bits per reading, the efficiency is even
lower. We also see from this graph that the normalized efficiency of algorithm @) improves with
increasingly biased input.

In the proof of Theorem 2, it is shown that the number of output bits of Algorithm) approaches
kEbE — klogy b — 2, where the first term is the available input entropy (bits per reading x readings
per batch X entropy per bit). For practical purposes, we can approximate this expression by
dropping the constant term and factoring to obtain k x (bE — log,b). This expression shows a
linear dependence on k, the number of bits per reading, and an almost linear dependence on b, the
number of readings per batch (with a logarithmic lower-order term). This observation is confirmed
by the second experiment, seen in Figure 2, which shows the average number of output bits produced
by each call to @, both for unbiased input (solid curves; p = 1/2) and biased input (dotted curves;
p = 1/4). Notice that a higher number of bits per reading (e.g., k¥ = 63) is associated with a higher
number of output bits per input batch. We see here that increasing k from 5 to 63 (a factor of 12)
only increases the number of output bits by a factor of about 1.6, confirming the result of the first
experiment (@ is less efficient for large numbers of bits per reading). As expected, we also see that
the number of output bits decreases for biased input (the dotted lines in this graph), because each
biased input bit contains less entropy.

1— k=2 hits per reading

0.8 —

0.6 |fs -
normalized]
efficiency FEE
047

0 200 400 600 800 1000
Input Readings per Batch (b)

Figure 1: Normalized Efficiency as a Function of Batch Size.

10000
=1/2 solid
8000 _ P
p=1/4 dotted
6000
output
bits
4000
2000
0 A
: 20 400 600 800 1000

Input Readings per Batch (b)

Figure 2: Average Output Bits Produced per Input Batch.

The third experiment measures the speed of the algorithm. Figure 3 shows the number of
output bits per second, as a function of the bits per reading, and of the bias. The deep notches
and other irregularities in the figure are caused by preemptions of our experimental process, which
was running in the background on a timeshared machine. For our implementation running on a
Sun Ultra-1 computer, as b increases from 2 to 1000, the average time to run the algorithm on one
batch of inputs increases from 2 milliseconds to 300 milliseconds, reflecting the quadratic overhead
of multiple precision arithmetic on large numbers. As b increases, the rate of output generation
first increases because the number of output bits of @) grows linearly with b, then decreases as

200000 — 63
p=1/2 solid

175000 — p=1/4 dotted

150000 —
125000 —
100000 —

bits/sec
75000 —

k=63,
s -'k:ll N Lk,

KRR T

2 4 8 16 32 64 128 256 512 1000

Input Readings per Batch (b)
Figure 3: Average Output Bits Per Second.

the quadratic-time overhead of large b takes hold. Overall , a favorable performance region for this
implementation of algorithm) has 5-10 bits per input reading, and a batch size slightly larger
than the number of bits of precision in native integer arithmetic on the computer (i.e., b ~ 34 for
the Sun Ultra-1, and b =~ 68 for 64-bit processors).

5 Conclusions and open problems

We have presented an algorithm @) for extracting unbiased bits from a biased die. @ is proven to
be optimally efficient in terms of its output entropy, and experimental evidence demonstrates that
Q is effective in practice.

A number of open problems remain, however. Many physical random sources are non-stationary
or weakly stationary, and thus incapable in general of producing truly random bits if their distri-
butions are unknown. Can the techniques presented here be applied to extract random-looking
bits from such sources? Helpful in achieving this aim might be the algorithm of Santha and Vazi-
rani [24] mentioned above. This technique takes correlated coin flips and obtains bits that are
computationally independent and unbiased, i.e., indistinguishable from truly random ones.

Algorithm @ is designed to work when the bias of die D is unknown. What if the bias is known,
though? In this case, is there an extraction algorithm more efficient than algorithm Q7 The authors
conjecture that in most cases, even if the bias of D is known,) is optimally efficient. A simple
proof of this fact might be edifying.

Acknowledgments. The authors wish to thank Burt Kaliski for his helpful comments on drafts of
this paper, and for proposing a simplification to the pseudo-code implementation of our algorithm.
We also wish to thank Daniel Bleichenbacher for proposing a simplification and extension of the
proof of Theorem 2 in this paper.

10

References

[1]

[10]

[11]

AGNEW, G. B. Random sources for cryptographic systems. In Advances in Cryptology —
Eurocrypt 87, D. Chaum and W. L. Price, Eds., Springer Verlag, pp. 77-81. Published in
Lecture Notes in Computer Science v. 304, 1988.

Brum, L., BLuMm, M., AND SHUB, M. A simple, unpredictable pseudo-random generator.
SIAM Journal on Computing 15, 2 (1986), 364-383.

BLumMm, M. Independent unbiased coin flips from a correlated biased source: a finite state
Markov chain. In 25th Annual Symposium on Foundations of Computer Science (Singer Island,
Florida, 24-26 Oct. 1984), IEEE, pp. 425-433.

Boppana, R. B., AND NARAYANAN, B. O. The biased coin problem. SIAM Journal on
Discrete Mathematics 9, 1 (1996), 29-36. A preliminary version was in STOC, 1993, pages
252-257.

DuKSTRA, E. Making a fair roulette from a possibly biased coin. Information Processing
Letters 36, 4 (1990), 193.

EASTLAKE, D., CROCKER, S., AND SCHILLER, J. RFC1750: Randomness recommendations
for security, Dec 1994.

Computing random numbers. Light headed. The Economist (31 May 1997), 74-75. See also
http://www.lavarand.sgi.com/.

ELiAs, P. The efficient construction of an unbiased random sequence. Annals of Mathematics
Statistics 43, 3 (1972), 865-870.

FELDMAN, D., IMPAGLIAZZO, R., NAOR, M., NisAN, N., RUDICH, S., AND SHAMIR, A. On
dice and coins: Models of computation for random generation. Information and Computation

104, 2 (June 1993), 159-174.

GOLDREICH, O. A note on computational indistinguishability. Tech. Rep. TR-89-051, Inter-
national Computer Science Institute, Berkeley, CA, July 1989.

GOLDREICH, O., KRAWCZYK, H., AND LUBY, M. On the existence of pseudorandom genera-
tors. SIAM Journal on Computing 22, 6 (December 1993), 1163-1175. A preliminary version
appears in FOCS, 1988, pages 12-24.

GUDE, M. Concept for a high-performance random number generator based on physical
random phenomena. Frequenz 39 (1985), 187-190.

HASTAD, J. Pseudo-random generators under uniform assumptions. In Proceedings of the
Twenty Second Annual ACM Symposium on Theory of Computing (Baltimore, Maryland,
14-16 May 1990), pp. 395-404.

HOEFFDING, W., AND SIMONS, G. Unbiased coin tossing with a biased coin. Annals of
Mathematical Statistics 41 (1986), 341-352.

IMPAGLIAZZO, R., LEVIN, L. A., AND LUBY, M. Pseudo-random generation from one-way
functions (extended abstract). In Proceedings of the Twenty First Annual ACM Symposium
on Theory of Computing (Seattle, Washington, 15-17 May 1989), pp. 12-24.

11

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

IToH, T. Simulating fair dice with biased coins. Information and Compuation 126, 1 (1996),
78-82.

JAKOBSSON, M., SHRIVER, E., HILLYER, B., AND JUELS, A. A practical secure physical
random generator. To appear in Proceedings of the Fifth ACM Conference on Computer and
Communications Security (CCS-5), November 1998.

KAvrisk1, B. A pseudo-random bit generator based on elliptic curves. In Advances in Cryptology
- CRYPTO ’86, A. M. Odlyzko, Ed., Springer Verlag, pp. 84-103. Published in Lecture Notes
in Computer Science v. 263.

LEVIN, L. One-way functions and pseudorandom generators. Combinatorica 7, 4 (1987),
357-363. A preliminary version appears in STOC, 1985, pages 363-365.

LuBy, M. Pseudorandomness and Cryptographic Applications. Princeton University Press,
New Jersey, 1996.

MoTwWANI, R., AND RAGHIVAN, P. Randomized Algorithms. Cambridge University Press,
1995, p. 25.

RICHTER, M. Fin Rauschgenerator zur Gewinnung von Quasi-idealen Zufallszahlen fir die
Stochastische Simulation. PhD thesis, Aachen University of Technology, 1992. In German.

RSA DATA SECURITY, INC. RSA SecurPC for Windows 95 Users Manual, 1997.

SANTHA, M., AND VAZIRANI, U. V. Generating quasi-random sequences from slightly-random
sources (extended abstract). In 25th Annual Symposium on Foundations of Computer Science
(Singer Island, Florida, 24-26 Oct. 1984), IEEE, pp. 434-440.

SHAMIR, A. On the generation of cryptographically strong pseudo-random sequences. ACM
Transactions on Computer Systems 1, 1 (1983), 38-44. A preliminary version appears in the
8th ICALP, 1981, pages 544-550.

SHANNON, C. E. A mathematical theory of communication. Bell System Technical Journal
27, 4 (1948), 379-423, 623-656.

SHANNON, C. E. Communication theory of secrecy systems. Bell System Technical Journal
28, 4 (1949), 656-715.

StouT, Q. F., AND WARREN, B. L. Tree algorithms for unbiased coin tossing with a biased
coin. Annals of Probability 12, 1 (February 1984), 212-222.

UEHARA, R. Efficient simulations by a biased coin. Information Processing Letters 56, 5
(1995), 245-248.

VAZIRANI, U. V., AND VAZIRANI, V. V. Efficient and secure pseudo-random number gener-

ation (extended abstract). In 25th Annual Symposium on Foundations of Computer Science
(Singer Island, Florida, 24-26 Oct. 1984), IEEE, pp. 458-463.

VAZIRANI, U. V., AND VAZIRANI, V. V. Efficient and secure pseudo-random number gener-
ation. In Advances in Cryptology — CRYPTO ’84 (1985), G. R. Blakley and D. C. Chaum,
Eds., Springer Verlag, pp. 193-202. Published in Lecture Notes in Computer Science v. 196.

12

[32] vVON NEUMANN, J. Various techniques used in connection with random digits. In National
Bureau of Standards, Applied Math Series, vol. 12. 1951, pp. 36-38. Notes by G.E. Forsythe.
Reprinted in von Neumann’s Collected Works, Vol. 5, Pergamon Press (1963) pages 768-770.

A Proofs

In this appendix, we present proofs of the two theorems presented in section 3 above. First, in
section A.1, we give a proof of our main theorem, Theorem 1, stating that () is an optimal fair bit
extractor. In section A.2, we give a proof of Theorem 2, stating that as the input length from a
source D grows, () asymptotically outputs the full entropy of D.

A.1 Proof that () is an optimal fair bit extractor

Let us assume that n > 1, i.e., that X is a non-trivial sequence. Let us also assume, without loss
of generality, that the die D has sides labeled 1,2,3,...,m. Thus, D has m faces. Let D(7) be the
probability that when the die D is rolled, it comes up on face labeled i. Recall that we denote by
D" the distribution on n rolls of the die D. Let D"(X) therefore denote the probability that D
yields the sequence X on n rolls, i.e., that D yields X[1] on the first roll, X[2] on the second roll,
etc. Observe that D™(X) = D(X[1]) x D(X[2]) x --- x D(X|[n]).

Definition 3 Let X = {X[1], X[2],...,X[n]} be a sequence of length n. We shall refer to the set
of all distinct permutations of X as the permutation class of X, which we shall denote by T1(X).

If, for example, X = {1,3,1}, then II(X) = {{1,1,3},{1,3,1},{3,1,1}}. Observe that for any
X1, X9 € TI(X), it is the case that D™(X;) = D™(X53). In other words, we can state the following
observation.

Observation 1 All sequences in (elements of) a given permutation class II(X) are equally proba-
ble.

The following definition is central to our proofs.

Definition 4 Let Q be a bit extractor, and 11(X) be a permutation class. @Q is said to be uniform
over TI(X) if for all pairs of bitstrings b and b' of equal length, Q maps the same number of
sequences from II(X) to b as it does from II(X) to b'. More formally, Q is uniform over II(X) if
HX: € I(X) s.t. Q(X1) = b} = { X2 € II(X) s.t. Q(X2) = V'}|. A bit extractor Q is said to be
uniform if it is uniform over all permutation classes TI(X).

A.1.1 Proof sketch

Recall that our goal is to prove that @) is an optimal fair bit extractor. The first step in our proof
obtains a more manageable notion of fairness. In particular, we show that a bit extractor V is fair
if and only if it is uniform. To do so, we construct a special die D for which the weighting of the
sides drops off very rapidly: D has the property that D(1) > D(2) > --- > D(m). This die D
induces a separation of permutation classes by probability. In particular, as shown in Lemma 1, if
sequences X and Y do not belong to the same permutation class, then the probability of obtaining
X in n rolls of the die D must be very different from the probability of obtaining Y in n rolls of the
die D. This separation of permutation classes aids in our proof of Lemma 2. Lemma 2 states that
in order to be fair, an extractor V must be uniform. We prove the lemma by contradiction. We

13

suppose that V' is not uniform, and consequently biased on some permutation class I1(X). Because
of the separation of permutation classes induced by die D, then, it is impossible for V to be fair.
In particular, V' is not able compensate for its bias over II(X) with a bias over other permutation
classes. In Corollary 2, we extend the result in Lemma 2 to show that a bit extractor is fair if and
only if it is uniform. To prove that @) is an optimal fair bit extractor, then, we only need to show
that @) is optimal among bit extractors that are uniform. This is what we do in Theorem 1, our
main theorem.

A.1.2 Proof details

Recall that our first goal is to show that if a bit extractor V is fair, then it is uniform. We begin by
constructing a heavily weighted die D in which D(1) > D(2) > --- > D(m). In particular, for all
values i, we let D(i) o< 1/h™, where h = m". (In other words, D(i) = w/h™ for some normalizing
factor w that makes Y D(i) = 1.) Lemma 1 and Corollary 1 show how such a die D induces large
differences in the probabilities on sequences from different permutation classes.

Lemma 1 If X and Y are not in the same permutation class and D"(X) > D™(Y), then
D"(X)/D"(Y) > m™".

Proof: By definition of D, D"(X) o< h™P(") for a polynomial p(z) of the following form: p(z) =
Am 2™ + Ap—12™"1 + -+ + a1z, where q; is the number of occurrences of roll 7 in the sequence X.
Similarly, D"(Y) o h=9 for a polynomial q(z) = by, 2™ + by_12""' + -+ + b1z, where b; is the
number of occurrences of roll ¢ in the sequence Y. Note that > a; = > b; = n.

It follows that D™(X)/D"(Y) = hi™W=P(M) where ¢(z) — p(z) = (b — am)2™ + (by_1 —
am—1)2™ "1+ -+ (by — a1)z. Since X and Y are not in the same permutation class, q(2) # p(z).
Since D" (X) > D™(Y), it follows that the first (i.e., leftmost) non-zero coefficient of ¢(z) — p(z)
is positive. Since Y a; = Y_b; = n, it is easy to see that the value of ¢(n) — p(n) is minimized for
positive n when (b, — ay,) = 1, (byy—1 —am—1) = —n, and (by —ay) = n— 1. When this is the case,
g(n) —p(n) > 1 for n > 1. Hence D"(X)/D"(Y) >h=m". 1

Corollary 1 Let X be a sequence of length n, and let Y1,Yo,...,Y be all sequences of length n
such that D™(Y;) < D™(X). Then > D™(Y;) < D™(X).

Proof: Since D has m faces, the number of possible sequences of length n is at most m™. Hence
the number of sequences Y; such that D"(Y;) < D"(X) is less than m™, i.e., k < m™. By Lemma
1, D"(X)/D"(Y;) > m™. The corollary follows. |

We are now ready to show the following.
Lemma 2 IfV is a fair bit extractor, then V is uniform.

Proof: We prove this by contradiction. Suppose V is a fair bit extractor that is not uniform. Then
there exists a permutation class over which V is not uniform. Let us assume, w.l.o.g., that among
permutation classes II(Y') over which V' is non-uniform, II(X) is such that D"(Y") is maximal. Note
that by Lemma 1, II(X) is uniquely defined.

Since V' is non-uniform over TI(X), there exist bitstrings b and b’ of equal length such that V'
maps more elements of II(X) to b than to b'. Since V is fair, V must output b and b’ with equal
probability over sequences taken from die D. Let G be the set of sequences that V maps to b,
and let H be the set of sequences that V' maps to b'. Let D"(G) denote Yy .5 D"(Y), ie., the

14

probability of obtaining a sequence in G or, equivalently, the probability of outputting bitstring b.
Let D™(H) be defined similarly. The fairness of V', then, means that D"(G) = D"(H). By our
assumption on the non-uniformity of V', however, there are more elements from I1(X) in G than in
H.

Let us now remove from both G and H all sequences Y such that D"(Y) > D"(X). By the
maximality of D"(X) among permutation classes over which V' is non-uniform, it must be the case
for any such Y that V' is uniform over the permutation class II(Y'). Therefore, after removing all
such Y from G and H, it will still hold true that D"(G) = D™(#). Let us now remove from # all
elements of II(X). Since there were more elements of II(X) in G than in H, we can also remove the
same number of elements of II(X) from G, and still have at least one X' € G such that X’ € TI(X).
By Observation 1, D™ is constant across all elements of the same permutation class, so it is still
the case that D"(G) = D™(H). It follows that D™(H) > D"(X’). Since the only sequences Y now
remaining in H are those such that D"(Y) < D"(X), this is a contradiction of Lemma 2. |

We are now ready to prove our main theorem.

Corollary 2 V is a fair bit extractor if and only if V is uniform.

Proof: By definition, if V' is uniform, then it maps elements from any permutation class evenly
among all bitstrings of a given length. Recall also that for any X7, Xo € TI(X), it is the case that
D(X;) = D(X3). If we combine these two facts, we immediately see that if V' is uniform, then V'
is a fair bit extractor. This, in conjunction with Lemma 2, proves the corollary. |

Theorem 1 (Main Theorem) The algorithm Q is an optimal fair bit extractor.

Proof: By Corollary 2, a bit extractor V is fair if and only if it is uniform, i.e., if and only if it
maps all elements of a permutation class II(X) evenly across bitstrings of any given length. This
means that V' is a fair bit extractor if and only if II(X) can be partitioned into sets A, Ao, ..., A;
such that for any i, |4;| = 2¢ for some ¢, and V' : A; — {0,1}¢ is a one-to-one mapping.

Let bitsy (II(X)) denote the expected number of bits output using V' over sequences from the
permutation class II(X), as calculated over the distribution D™. Observe that log, |A;| = ¢ is
the number of bits V' outputs when given an input from A;. Observe too that if X' € TI(X),
then Pr[X’ € A;] = |A;|/|I(X)|. Let h = 1/|II(X)|. It is easy to see, then, that bitsy (II(X)) =
h 32| Ail logy | Ail.

Suppose that a set A; is bisected into new sets A} and AY (and V is modified appropriately to
preserve uniformity). Let Ap;;s denote the consequent change in bitsy (II(X)). By the calculations
above, it is straightforward to show that Ao = 2h|A;|(logy |4;i|/2) — h|Ai|logy [Ai| = —h|A.
Hence, bisecting a set A; causes bitsy (II(X)) to decrease. On the other hand, let us suppose
that there exist sets A, and A; such that |A,| = |A;i|, and that these sets are merged (and V is
modified appropriately). In this case, conversely, Apits = +h|A;|. Thus, this merging of equal-
sized sets causes bitsy (II(X)) to increase. It follows that bitsy (II(X)) is maximized when no
merging of sets is possible, in other words, when the sizes of the Ay, Ao,..., A; are distinct. As
our proposed bit extractor @) partitions all permutation classes II(X) into such distinct sets, @
maximizes bitsg(II(X)) for all permutation classes II(X).

By linearity of expectation, since () maximizes bitsg(II(X')) for all permutation classes IT(X),
the expected number of bits output by () is maximal. This is to say that Excpn[bitsg(X)] is
maximal over all fair bit extractors. Therefore @ is optimal. [

15

Note that our proof assumes a die D with a finite number of sides m. It is possible to generalize
our proof to dice with infinite number of sides, i.e., to random sources with infinite numbers of
possible outputs. For the sake of simplicity, we omit this more general proof.

A.2 Proof of asymptotic optimality of @)

Our aim in this section is to prove that as the number of readings input to () goes to infinity, @
asymptotically extracts the full entropy of the source to which it is applied.

A.2.1 Proof sketch

We give our proof in two parts. Recall that ()2 takes as input the roll of an unbiased die U with
S sides and outputs unbiased bitstrings. It is easy to see that SH(U) = logy S. In Lemma 3, we
show that Qs is efficient. In particular, we show that on average, Q9 extracts at least |log, S| — 1
bits from a roll of the die U—very nearly the full Shannon entropy of U. Recall now that (); takes
a sequence of readings (coin flips in our proof), and outputs the roll of a simulated, unbiased die
U with S faces. In Theorem 2, we effectively show that)y is efficient. The entropy of the input
to Q1 may be viewed as the entropy associated with the choice of permutation class II plus the
entropy associated with the roll of an unbiased die U. The entropy of the output of ()1 consists
of the entropy generated by the die U. We show that the entropy associated with U is generally
much larger than the entropy associated with the choice of II. In other words, we prove that on
average, ()1 yields a die U with a large number S of faces—large enough so that the entropy of U
approaches the entropy of the random source D". Together with Lemma 3, this demonstrates that
our algorithm as a whole asymptotically extracts the full entropy of D™.

A.2.2 Proof

Lemma 3 If the unbiased die U has S sides, then Qo will extract at least |logy S| — 1 bits on
average from a roll of U.

Proof: Suppose that sjs;_1...so is a binary representation of S such that s; = 1. Let B(S)
expected number of bits output by Q2 on an unbiased die U with S faces. It is easy to see by
definition of Q9 that B(S) = (1/9) >7_, i2%.

Suppose S’ = 2/t! — 1, ie, S’ is such that s = sh_y =58, 5= =55 =1 Observe by
straightforward calculation using the definition of B that B(S’) > j — 1. Let us suppose then that
we flip a set of ‘1’ bits in S’ to ‘0’ bits. In particular, let us suppose that we flip a series of k distinct
bits, and that the last of these bits is s;. We shall call the resulting integer S”’. Let us now prove
by induction that B(S") > B(S’). If k = 0, then S = 5', so B(S") = B(S’). Suppose now that
k > 0, and that S” is the integer obtained by executing on S’ all ‘1’ to ‘0’ flips except the flip on s/.
By induction, B(S") > j — 1. By definition of B, we see that B(S"") = (S"B(S") +12)/(S" + 2).
By straightforward algebra on this last expression combined with the fact that B(S") > j — 1, we
are able to show that B(S") > B(S”). This completes the inductive proof. Since we showed that
B(S") > B(SY’), and started with B(S") > j — 1, it follows that for any integer S, it will be the
case that B(S) > j — 1. This proves the lemma. [

For the proof of our theorem, let bitsg(D") be the expected number of bits output by @) over
inputs from D™ and let poly(n) denote a quantity which is polynomial in n. We use the symbol ~
to denote equality asymptotic in n. In other words, a ~ b if lim,, ,», a/b = 1.

Theorem 2 For any biased die D, bitsg(D") ~ SH(D").

16

Proof: Observe that a permutation class II(X) and the output Q1(X) are together sufficient to
determine X uniquely. Hence, SH(II(D")) + SH(Q:(D™)) > SH(D™). By Lemma 3, bitsg(D") =
SH(Q2(Q1(D™))) > SH(Q(D™)) — 2. Combining this equation with the previous equation yields
SH (bitsg(D™) > SH(D"™) — SH(II(D™)) — 2.

Let k here represent the number of possible outcomes of the die D. A permutation class may
be uniquely specified by the number of appearances of these k£ outcomes in a sequence of n rolls.
It follows that [TI(D™)| < n*, and hence that SH(II(D")) < logs(n*) = klog, n. Plugging this into
the expression for bitsg(D™) above reveals that bitsg(D") > SH(D"™) — klogyn — 2. Since it is
obviously also the case that bitsg(D") < SH(D"), the theorem follows. |

Theorem 2 shows that the expected number of bits output by) on any biased die D asymp-
totically approaches the full entropy of the die D. The larger the number n of rolls of D input to
Q, the closer () is to approaching full efficiency.

17

B Pseudo-code for the algorithm (@

In this appendix, we give pseudo-code for the efficient execution of the optimal fair bit extractor
@ described in the body of the paper. This pseudo-code is broken into two parts. The first part
is a pseudo-code function that executes the algorithm). In other words, this pseudo-code takes
a potentially biased sequence X and outputs the roll of an unbiased die U. The second part is a
pseudo-code function that executes the algorithm ()2. This pseudo-code takes as input the roll of
an unbiased die U, and outputs a unbiased bitstring. Thus, to compute Q(X) for a given sequence
X, we simply compute Q2(Q1(X)).

B.1 Pseudo-code for @)

The pseudo-code for () takes as input a sequence X of real numbers, and outputs a pair (R, .S),
representing the roll R obtained from an unbiased die U with S faces. Recall that in order to
compute Q1 (X) efficiently, we compute the rolls of a series of small, unbiased dice Uy, Us, ..., U,
associated with X, and then combine these small dice into a large, unbiased die U. Recall too that
the die U; has n — 1 — 1 faces, labeled with elements of the rank set p;(X). Since some of these
faces may have identical labels, it is convenient in our pseudo-code to represent the roll obtained
from Uj; as a sub-interval [I,] 4 v] over the interval [0, f], where f =n — i+ 1, the number of faces
of U;. The value | may be viewed as a representation of the roll r obtained on U;. In particular,
if the face that comes up on rolling U; has label r, then [is the number of faces with label values
less than r. The value v is equal to the number of faces bearing the label r. Note that v/f is the
a priori probability of obtaining the roll » on U;, while I/ f is the a priori probability of obtaining
a roll value less than r.

Example 7 Let us revisit Example 5, in which X = {15,10,5,15,5}. For this example, r9(X) =
{2,1,3, 1}, hence the die U, has four faces; these bear the labels {1,1,2,3}. The roll r obtained on
Us in this example is r = ranks(10) = 2. Since there is only one face bearing a label less than 2, and
since label 2 appears on only one face of Us, this roll corresponds to the sub-interval [2, 3] over the
interval [0,4]. Note that a priori probability of obtaining a roll of 2 on Us = v/f = (3—2)/4 = 1/4.

The algorithm 1 maintains a space [L, F'] of possible outcomes of the die U. On initialization,
this space is equal to [0,S]. In each iteration i, this space is narrowed with respect to the roll
obtained on die U;. As explained above, the roll obtained on U; is represented as a sub-interval
([, + v] on the interval [0, f]. The value of the lower bound / on the roll of U; serves to update L,
the lower bound on the space of possible outcomes of U. In particular, we set L =1/f * L in each
iteration. The value v is used to update F, the number of remaining faces that serve as possible
outcomes of U. We set F' = v/f x F' in each iteration. Recall that v/f is the a priori probability
of obtaining the roll r on die U;. Thus, as we would expect, the smaller the a priori probability
associated with r, the more the roll r narrows the possible remaining outcomes of U.

We assume here the existence of a function factorial(¢) which computes 4!. It is important that
this function adhere to the convention that 0! = 1. Also required is a function rank(X[é], X') which
computes the rank of X[i] in the sequence X.

18

Function Q(X)
/* Input: a sequence X = {X][1],X][2],...,X[n]} of readings from a
biased die D
Output: a pair (R,S) representing a roll R obtained on an unbiased
die U with S sides */

/* Compute rank frequencies */
for i =1 ton

frii} = 05
for i =1 ton

frirank(XTd], X)]++;

/* Compute number of sides of die U; this is S =n!/Y (frx(i)!) */
S = factorial(n);
fori=1tomn

S = 8 / factorial(fr[i]);

L = 0;
F =85;
/* Main loop */
for i =1 ton—1
/* Note that U, is a 1-sided die, and can therefore be excluded */

/* Compute data for die U; */

l =0;

for j = 1 to rank(X[i],X) —1
L= 1+ frljl;

v = frlrank(X[i], X)];

/* Fold data for die U; into cumulative roll */

f=n—1i+1;
L=L+(l)f)xF;
F = (v/f)* F;

/* Update frequency table for remaining measurements */
frirank(XT[i], X)] --;

R =L+1;
return(R, 5);

B.2 Pseudo-code for (),

Let us now give the pseudo-code for the algorithm (Js. This algorithm takes as input a pair
(R, S), where S represents the number of sides of the unbiased die U from which the bits are being
extracted, and R € {1,2,...,S} represents the resulting roll of that die. The algorithm outputs a
variable number of bits, or ¢ if no bits are to be returned. We assume a function binary(z) that
returns a conversion of the integer z into a binary representation.

19

Function Q2(R,S)
/* Input: a pair (R,S) representing a roll R obtained on an
unbiased die U with S sides
Output: an unbiased bitstring */

SkSk—1-..51 = binary(S);
rjrj—1...71 = binary(R —1);
TEkTk—1-..Tj41 = 00...0;
for ¢ = k downto 2
if s; = 1 and 7, = 0 then
return(r;_17ri_9...71);
return(¢) ;

20

