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Abstract. We introduce two improvements to the recently proposed
so called magic ink DSS signatures. A first improvement is that we re-
duce the overhead for tracing without noticeably increasing any other
cost. The tracing cost is linear in the number of generated signatures in
the original proposal; our improved version reduces this to a logarithmic
cost in the common case. A second improvement is that we introduce a
method for determining whether forged currency is in circulation, with-
out affecting the privacy of honest users.

Our improvements rely on our introducing a so called hint value. This
is an encryption of the signature transcript received, submitted by the
signature receiver. Part of the processing of this hint value is done using
a new technique in which the high costs of secret sharing and robust
computation on shared data are avoided by manipulation of encrypted
data rather than plaintext. (Whereas the idea of computing on encrypted
data is not a new notion in itself, it has to the best of our knowledge not
previously been employed to limit the use of costly secret sharing based
protocols.)

Keywords: efficiently revokable privacy, magic ink DSS, hints, electronic
commerce

1 Introduction

Many changes in society are caused by the introduction of vital technology. An
example of this is the invention of the printing press in 1457, which by a signifi-
cant reduction in the costs of printed material caused a drastically increased lit-
eracy, and political awareness by allowing inexpensive information dissemination
to the masses. Another example of an important step forward is the telephone,
invented in 1876. These and innumerable other inventions caused and fueled the
industrial revolution, transforming society in an eye-blink of human history. Al-
though hardly anticipated only a few years ago, the Internet now promises to be
a similar catalyst of changes to society. An integral part of this new revolution
we are facing relates to commerce.
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This new technology, however, promises to be as dangerous as it is useful.
On the one hand, we know that given the strikingly low costs of information col-
lection and analysis of the same, payment schemes not offering sufficient privacy
may indeed act as an ever-present secret police in the hands of dubious commer-
cial interests. On the other hand, it is also well-known that too much privacy
may present a threat to society at large, in the form of terrorism, blackmailing,
and the undermining of entire economies by corruption of or dissemination of
the secret keys of banks (see [33,21]). A recent trend in research in the area
of electronic commerce has therefore been to find payment schemes with re-
vokable anonymity (e.g., [5,6,15,18,19,21,22,23,24,26,34,35,306],) allowing a set of
trustees to remove the privacy of a given user or payment, but not allowing an
attacker to correlate payments to the identities of the payers without corrupting
a substantial number of these trustees.

Most signature schemes with revokable anonymity offer two types of tracing,
namely: (1) from a given signing session or identity of a receiver to a description
of the signature(s) obtained, and the opposite direction: (2) from a given signa-
ture to the corresponding signing session or identity of the signature receiver.
Magic ink signatures [23] offer a third tracing option, which is to determine if
a given signature was obtained in a given session or not. This third type allows
a tighter control over tracing by allowing suspicions to be verified, without di-
vulging any more information than whether the signature and the session match
or not.

In the magic ink proposal in [23], the first and third tracing options have
costs that are independent of the number of signatures that have been generated.
The second tracing option, however, has an expected cost which is linear in the
number of generated signatures. This is a concern in a practical implementation,
especially given that this type of tracing is likely to be the most commonly
needed.

A first result of this paper is to present a modification of the original magic
ink scheme that lowers the cost of this second tracing option to a logarithmic
cost ! in the common case, with a fall-back to a linear cost in a highly unlikely
case. This is done without affecting the other tracing costs, and with only a
minor increase in storage costs for the signature generating servers.

A second issue we deal with relates to increasing the protection against
attacks. One of the main benefits of magic ink signatures compared to other
schemes with revokable anonymity is that it allows the signer/bank to distin-
guish between valid signatures that were produced by the bank servers, and
valid signatures that were produced by another party holding the signing keys.
This is important if there is a suspicion that the signing keys of the banks have
been corrupted (corresponding to the so-called bank robbery attack). Whereas
the availability of this method promises to act as a definitive deterrent against
attacks aiming to corrupt the bank keys, the very high cost of the filtering makes

! This is using a naive search algorithm. Using a more efficient algorithm in which
space is traded off for efficiency, a constant cost can be obtained.
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the method impractical unless it is certain that the signing keys have been cor-
rupted.

A second result of our paper is to answer the important question of how it
can be detected at a very early stage that a bank key has been compromised.
In previous proposals that are granting privacy to honest users, no such method
was available. The crux of the idea is to detect valid bank signatures that have
not been produced by the bank without affecting our stringent requirements
on the privacy of honest users. This is similar in spirit to the notion of fail-
stop signatures [31], which were proposed by Pfitzmann to allow the detection
of valid but forged signatures. We propose a method for detecting forged DSA
signatures, using the very same constructions introduced to lower the cost of
tracing. This allows the above mentioned expensive filtering techniques to be
employed only when necessary.

As a result, we obtain a highly efficient and practical signature generation
scheme offering the following four important mechanisms: (1) tracing from a
given signing session to the corresponding signature (or coin); (2) tracing from
a given signature/coin to the corresponding signing session; (3) comparison of
sessions and signatures to determine whether such a pair correspond to each
other; and (4) detection of signing keys having been compromised. This last
feature allows instantaneous installation of new secret and public keys, and an
on-line filtering of all deposited coins of the old type to remove forged coins.

Thus, this new scheme, which offers improvements both in terms of efficiency
and functionality, would potentially allow a realistic payment scheme that suc-
ceeds in balancing the scales of privacy in a way that avoids all known attacks
and weaknesses.

Outline

Section 2 presents our general model. In section 3, we define the properties our
scheme achieves. In section 4 we explain the tools we utilize to achieve our
solution, which is discussed in section 5. This is followed in section 6 by the
introduction of the main protocol for improved magic ink signatures and all
sub-protocols that are needed. Section 7 presents the second result of our paper,
namely a protocol for detecting illicit signatures. In section 8 we enumerate the
properties of our scheme; these are proven in the Appendix.

2 Model

We assume that there are three types of (polynomial-time) participants: sign-
ers/tracers S, receivers R, and verifiers. A signer/tracer is an entity with two
functionalities (as indicated by the name). When acting like a signer, this entity
produces signatures on messages provided by the receiver; when acting like a
tracer, it selectively correlates signatures and sessions that match (this will be
elaborated on later.) The receiver sends message-signature pairs to a verifier,
who wants to verify their validity with respect to the public key of the signer.
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(Typically, these three entities correspond to banks, payers, and merchants; or,
alternatively, to certification agencies, service providers, and users who want to
determine whether a given service provider is certified.)

We consider two types of adversaries. The first, the so-called mobile ad-
versary (introduced in [29]), may control up to a threshold of signers/tracers,
and any number of receivers and wverifiers. He can adaptively corrupt different
signer/tracers for each time period, whose length is a security parameter set
by the protocol designers. Our second type of adversary is an adversary of the
first type who also has complete read access to the private storage areas of all
signer/tracer servers. We call this adversary, which was introduced in [23], the
read-all adversary.

3 Definitions

Terminology: We say that the predicate match(s;, 7;) is true if and only if s; is
the transcript the receiver obtains in the signing session 4, and 7; is the transcript
obtained by the signer during the same session .

Definition 1: Anonymity and Revokable Anonymity

Let R be a set of honest signature receivers and S is a set of honest signature
servers. Additionally, let R’ be a set of dishonest signature receivers, and S’ a
set of dishonest signature servers. We let the receivers in R U R’ interact in the
proposed protocols with quorums (i.e., sets of sufficient size to recostruct the re-
lated secret) from S’ US a polynomial number of times n, after which a receiver
R; € R obtains a signature s; on a message m,; of his choice. We assume that
S’ obtains the set of all generated signatures {s;}, and a list of all signer-side
transcripts (71, ..., 7).

We say our protocols implement anonymity if it is not possible for R U &’
to match any signature s;, obtained by a receiver in R, to its corresponding
signer-side transcript 7; with probability better than what is achieved by mak-
ing a guess uniformly at random from all transcripts produced during sessions
with R.

We say our protocols implement revokable anonymity if any quorum of hon-
est servers S or tracing servers can perform the following three transactions in
polynomial time:

1. Given a valid message-signature pair described by s; and the list of all signer-
side transcripts (71, ...,7,), select the value 7;, such that match(s;, 7;).

2. Given a valid message-signature pair described by s; and one signer-side
transcript 7;, determine whether match(s;, 7;) holds.

3. Given a signer-side transcript 7;, compute a value trace; such that given
trace; and a value s;, a third party can determine in polynomial time, and
without any interaction, whether match(s;, ;) holds.
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Definition 2: Unforgeability

As before, we let R be the set of honest signature receivers; R’ the set of dishon-
est signature receivers; S the set of honest signature servers; and S’ the set of
dishonest signature servers. We let the receivers in RUR' interact with quorums
from &’ US a polynomial number of times. Let o be the set of valid message-
signature pairs obtained by R, and ¢’ the set of valid message-signature pairs
obtained by R’. We say that a signature? is unforgeable if it is infeasible for the
adversary to output a valid message-signature pair that is not in o U o”.

Definition 3: Illicit Signature Detection

We refer to an illicit message-signature pair as any valid message-signature pair
s for which there is no signer-side transcript 7 such that match(s, 7). (That is,
illicit signatures are valid signatures produced by an adversary who has corrupted
the secret signing key used, or has broken the computational assumption of
the signature scheme.) We call a system illicit signature detecting if it allows
the signer/tracer to distinguish such an illicit message-signature pair from a
message-signature pair that is not illicit, but which is produced by the signer.

4 Building Blocks

Before we introduce the improved version we review some protocols, which will
later be used as building blocks.

Notation: Since we use different moduli at different times, we use [op], to
denote the operation op modulo z where this is not clear from the context.

ElGamal: Our protocol uses ElGamal encryption [16]. To encrypt a value m
using the public key y, the person who performs the encryption picks a value
Y €u Zg uniformly at random, and computes the pair (a,b) = (my”, g7). Thus,
(a,b) is the encryption of m. In order to decrypt this and obtain m, m = a/b*
is calculated.

Mix-Networks: Consider an input list (aq, ..., @,). A mix-network produces
an output which is a random (and secret) permutation of (a1?,...a,%), for a
given secret key x € Z,.

We will use a robust (i.e., such that it produces the correct output given an
honest quorum of participants) mix-network [10] decryption scheme, such as
[1,25,27).

2 This refers both to the transcript and the method of generating the transcript.
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The Digital Signature Standard (DSS): We use the DSS [7] (described
herein) as the underlying signature algorithm.

Key Generation. A DSS key is composed of public information p, ¢, g, a public
key y and a secret key x, where:

1. p is a prime number of length [ where [ is a multiple of 64 and 512 <[ < 1024.
2. q is a 160-bit prime divisor of p — 1.

3. g is an element of order ¢ in Z7.

4. z is the secret key of the signer, a random number 1 < z < g.

5.y = [¢°], is the public verification key.

Signature Algorithm. Let m € Z, be a hash of the message to be signed. The
signer picks a random number k such that 1 < k < ¢, calculates k! mod q
(w.l.o.g. k and k~! values compared to DSA description are interchanged), and
sets

The pair (r, s) is a signature of m.

Verification Algorithm. A signature (r, s) of a message m can be publicly verified

by checking that r = [[g™* Tsil]p]q-

Magic Ink Signatures

As the underlying signature algorithm we use the DSS. For simplicity, we only
show a single-server method for producing Magic Ink DSS signatures. Since the
privacy depends on the distribution of the signer, the latter must be distributed.
The real generation and tracing protocols are therefore distributed variants of
this protocol, in order to increase the availability and security of the system and
to introduce control (see [23]).

— —1
1. S generates a random secret session key, k €, Z,, and computes 7 = [g* ] .

2. The signature receiver R has a hashed message m € Z, that he wants signed.
He generates two blinding factors, a, 3 €, Z, and computes r = [[7°]
p=[mal,. and p = [ra],.

R sends (u, p) to the signature generating server S.

3. S produces a tag, which will be a function of the signature transcript, and
which uniquely identifies this. (We describe this step in more detail later).
This tag is used for tracing, in case of anonymity revocation.

Then, S generates the DSS signature o = [k(u + zp)], on the message p,
using the blinded public session key p. The server sends o to R.

4. The signature receiver R unblinds the signature: s = [ca~"37'] . The triple

(m,r,s) is a valid DSS signature on m.

k

P]Q’
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Tracing: There are three types of tracing we can perform:

1. From known signing session to signed message: The signature invari-
ant is calculated from the tag of a given session. This signature invariant
uniquely identifies the corresponding signature.

2. From known signed message to signing session: Given a signature, we
wish to find the corresponding signing session. In the first magic ink proposal
[21], this was done by computing a trace value that was compared to the tag
of each potential signing session. In this paper we suggest a more efficient
method for this type of tracing.

3. By comparison: The signature invariant of a given signature is compared
to the tag of a given session. The output is one bit, whether they correspond
to each other or not.

5 Owur Solution

Consider the tracing type 2 above, that is, from a given signature to the cor-
responding signing session. The idea is to introduce values that are voluntarily
submitted by the receiver and that can be used to very efficiently trace from a
signature to a signing session. The reason we say that these values, which we
call hints, are voluntarily submitted is that due to efficiency requirements, there
are no controls on their correctness. It makes little sense for a user to submit
an incorrect value, however, since the difference will just be whether the tracing
(if needed) will require a low or a medium amount of computational resources.
Also, even though an incorrect value will not be detected during the signing
(withdrawal) process, it will be detected by the mechanism for illicit signature
generation, after which the signature/coin can be traced and revoked, and the
user punished. Efficiently, this will make the cost for tracing logarithmic, even
though we rely on a fall-back to the linear-time tracing mechanism of the old
magic ink solution if the wrong hint value is submitted.

A hint can be thought of as an encryption of the signature the receiver
obtains, with the property that it is not possible for an adversary corrupting less
than a quorum of signer/tracer servers to compute the hint value corresponding
to a signature (and vice versa), while a quorum of signer/tracers can efficiently
compute the hint value given a signature. The signing process gives the receiver
the signature on a message, and gives the signers, among other things, the hint
value, which is stored along with other tracing values and the identity of the
receiver.

In order to trace from a signature to a signature session, a quorum of tracing
servers compute the hint value from the signature, and select the corresponding
record (from a list of sessions that has indices sorted with respect to hint values).
If no record is found, we use a fall-back to the linear search method described
in [23].

Our signature and hint generation method involves a proof of knowledge by
the receiver, to guarantee that the hint value submitted is not a function of
hints submitted in previous sessions. (If this were not checked then it would
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potentially undermine the privacy of other users.) We prove that the addition
of the hint value, the process to obtain it, and the other new additions to the
scheme do not negatively affect any desired protocol property.

The traditional way to distributively compute and verify the correct form
of a value such as the hint value involves sharing of the secret value submitted
by the receiver. This is found, however, to drastically increase the costs of the
proofs of partial correctness, and we instead take another approach, namely to
perform a computation on an encrypted transcript. Although this method is
not conceptually novel, it has been used only to a very limited extent, mostly
due to the difficulties of computing on encrypted data. We find that the type
of computation we need to perform here for the processing of the hint value
can be done very efficiently on encrypted data. This method might therefore be
of independent interest, and might be applied to similar situations in order to
boost the efficiency of other multi-party computations.

Note also that this new method does not affect in any way the resulting
signature: the signature obtained by the receiver is still a standard DSS signature
(on a message of a particular format.) We believe that this is an important point
in order to allow commerial use of the scheme, and to benefit from the careful
scrutiny of the DSS that has been performed. The only negative side-effect of our
new signature generation scheme, as far as we can see, is the nominal increase in
communication and computation of the parties involved, and the small increase
in the size of database that is kept by the signer/tracer.

6 Improved Distributed Magic Ink Signatures

Let us now consider a distributed version of the protocols previously presented.
Here, let @ be a quorum of ¢ servers in S ...S,. We assume that the message
m to be signed is of the form m = fM mod p for a generator f. Commonly, this
type of scheme is used to sign a public key, in which m is this public key, and
M is its corresponding secret key. (For messages M that can be guessed with a
non-negligible probability, an alternative form m = fi™ £, for a random R can
be employed.)

System initialization: The servers distributively generate a random secret z
for signature generation, using a (ts,n) secret sharing scheme, a random secret
x¢ for tracing, using a (t;,n) secret sharing scheme, and a random secret xj for
hint generation, using a (¢, n) secret sharing scheme. Each server S; publishes
his shares of the public keys y; = Yii = ””“‘]p, and yp; = [gzhi]p from
which y = [¢"],, ¥+ = [¢"], and yh Tg are interpolated (we refer to [30]
for a discussion of how thls is done.) Each server then proves knowledge of his
secret shares x;, xy; and zp; to the other servers; if some server fails, then he is
replaced and the protocol restarts. Finally, the signing public key y is published.

Session initialization: Before starting the signature generation protocol, the
receiver R has to send his identity id and a proof of knowledge of the se-
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cret key corresponding to id. The signers pick a session identification number,
sessionid = id||l, where [ is a number making sessionid a unique string.

Signature generation:

1. The servers prepare a temporary key pair:
(a) The set of servers S;|i € @ distributively generate the private session
key k €4 Zy4.
(b) Server S; has a share k; and publishes [g¥¢] iy

(¢) The servers compute 7 = [gkil] p» using the methods for computing recip-
rocals in [20].

(d) 7 is sent to the signature receiver R.

2. The receiver R wants a signature on the message m = [hM Jp-

(a) He generates two blinding factors, «, 8 €, Z,.

(b) He computes blinded versions of m and 7: p = [ma],, r = [[Fﬁ]p]q and
p=lral,.

(c) Using a (ts,n) secret sharing, he computes (u1, ... py) of u, with public
information (¢g* ... g#") and a (s, n) secret sharing (p1, . .. pn) of p, with
public information (yf* ...y{").

(d) He computes an ElGamal encryption of m w.r.t. the public hint key
yn: (a,b) = (mg”,y})., where v € Z,.

(e) He sends (u, pi,a,b) to signature generating server S;.

3. The tracing values and the signature are generated.

(a) The servers interpolate the tag, tag = ([g"],, [v/],)-

(b) After they have verified the correctness of the computation of (a,b) (for
which we present a robust protocol below), they robustly calculate the
hint value hint = a®* /b. If R did not cheat, this value equals m®".

(¢) The hint is stored in a record along with tag, sessionid and id.

(d) The set of servers S;|i € @ distributively generate the DSS signature o
on the message p, using the (shared) public session key p; o is calculated
as follows: S; generates o; = [k;(u; + zip;)],. Then, o = [k (u + zp)], is
interpolated from the o;’s using the method for multiplication of secrets
in [20].

(e) The servers send o to R.

4. The signature receiver R unblinds the signature: s = [oa~"'7"] . The triple
(m,r,s) is a valid DSS signature on m.

Hint-generation:

Let x, be a private key distributively held by the tracing servers; y, = [¢g*"], is
the corresponding public key.

1. The receiver calculates an ElGamal encryption of m: He chooses a v €, Z,
and calculates (a,b) = (mg”,y)) = (fMg”,y;). This pair is sent to the
servers.
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2. (a) The servers distributively compute hint; = a™" /b.

(b) In order to prove that every server has performed the correct exponen-
tiation the servers run a protocol for proving valid exponentiation, e.g.,
[12,32]. This is a proof that log,(hint;b) = log,(yn:) for a given quadru-
ple (a, g, (hint;b), yni)-

(¢) The servers compute hint as the Lagrange-weighted product of the shares
hint; of the servers in the quorum. (This value equals [m®*], if R did
not cheat.)

We also have to force the receiver to prove that a is computed the right way.
This can be done using the method described below:

Avoiding Subliminal Tracing

Attacks are possible if it is possible for an attacker to inject previously seen en-
cryptions, or functions of these, and observe what hint is produced. The potential
problem is if an attacker would use the hint-generation protocol as an oracle to
compute a hint of a seen signature. For example, assume an attacker could take
a value m’ of a signature he has seen ”"on the street”, encrypt this (claiming
to withdraw a new coin) and send (a,b) = (m’g”,y;) to the servers. Then one
dishonest server would watch to see what value hint = m’*" is produced: this
efficiently traces the value m/, because the dishonest participants get to know
the corresponding record of the signature. Therefore, the user has to prove that
he knows the format of the portion of the encryption that will be raised to the
xp, power. If he knows a representation, it cannot be a signature ”on the street”.

Our solution for the encryption need to satisfy plaintext awareness (The
best description of this concept is probably that of Bellare, Desai, Pointcheval
and Rogaway [2]). This guarantees that the receiver knows the plaintext, pre-
venting this attack. Note, though that this must be done without revealing any
transcript-specific information.

We do it by proving knowledge that (a,b) = (fMg7,)), without leaking
any information about the message m = f™. As mentioned above, we are only
concerned about the value a; if b isn’t of the right form that only would give us
a wrong hint-value.

Since the servers have to verify the computation of a in step 3b of the signa-
ture generation protocol, the receiver has to prove knowledge during step 2 and
step 3a.

1. Each verifier S;, ¢ € @ (which in our case corresponAds to a participating
signing server) selects a value €; €, Zg. S; publishes (fi, 3:) = ([f“],, [9],)
The pair (f,9) = ([[L;cq fi]p, [lico gi]p) is sent to the signature receiver.

2. The prover (in our case, the signature receiver) computes @ = [fM 9,
where M is the preimage of m and < is the blinding exponent chosen for

the ElGamal encryption. The prover sends a commitment com(a) to the
verifiers.
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3. Each verifier S; publishes his value ¢;, and € = [ZiGQ ei]q is sent to the
prover.

4. The prover verifies that (f,§) = ([f<],: [¢°],) and halts if this is not satisfied.
Otherwise, he decommits to his commitment of a to the verifiers.

5. Each verifier checks that a = [a] , and accept iff this holds.

Tracing

We recall that we have a secret key x for signing, a secret key x4 for tracing, and
a secret key xj, for generating the hint. Furthermore we have tag = ([g"],, [v/] g)
The three types of tracing are performed as follows:

1. From known signing session to signed message: (unchanged)
The pair (traceq,tracey) = (tag:,tags) is calculated by any size-(t; + 1)
quorum of holders of shares of x; . This pair is output. A certain signature,
described by (m,r, s), corresponds to the given tag if traceg"f1 =, tracey.

2. From known signed message to signing session:
Given a description (m,r, s), the tracing servers compute a value trace. =
[m®"] . Then they compare trace. with the stored hints.
If trace. =, hint for a particular record, then the signed message corre-
sponds to the signing session of this record.
If there is no such hint which equals trace., then the tracing servers have to
calculate (trace,, tracey) = ([taggmfl]p,tagb) for each potential withdrawal
session. Using a protocol for verification of undeniable signatures [12], they
verify whether logg(y:) = l0Gtrace, tracey, which holds if the signature corre-
sponds to the tag.

3. By comparison: (unchanged)
Given is a tag = (¢, y}) and a signature (m, r, s). The tracing servers calcu-
late (traceq, tracey) = ([mgg"fl]p, tagy). Using the protocol for verification
of undeniable signatures, we verify whether log,(y:) = logirace, tracey, which
holds if the signature corresponds to the tag.

7 Illicit Signature Detection

This section briefly presents our second result in this paper, which is a method
to detect that the secret signing key has been compromised.

We let the signers periodically blind all the hints for valid sessions, and, using
a mix-network, blind portions of the recently “deposited” signatures, and then
verify that each blinded deposited transcript corresponds to a blinded session
transcript. If there is any blinded deposited transcript that has no match, then
this is unblinded and traced. If, during tracing, a matching session is not found,
then the servers output “signing key compromised” as this signature cannot
have been produced by the signature servers. Otherwise, the signature simply
had an incorrect hint value submitted, in which case appropriate action is taken
to punish the withdrawer.
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We will now present the protocol in more detail:

1. As input the mix servers have a list (hinty,...,hintx), which have been
generated during signature generation protocols. A blinding exponent ( is
distributively chosen so that { = HiGQ (i, where (; is the share held by server

Si. The servers robustly compute (hint%, ceey hintﬁ().

2. (a) The servers have a list (mq,...,my) corresponding to the messages of
all the recently deposited signatures (i.e., those deposited since the last
run of the detection protocol.)

(b) They robustly blind this list with the same blinding exponent ¢ and get

(m§, .. .,mi).
(¢) The mix servers perform a miz-decryption on this list, resulting in a
~ A ~ xr
permutation of the list (hinty, ..., hinty), where hint; = (m;*)

3. All entries from the second list that exist as entries in the first list are re-

moved. Each remaining item hint; is unblinded by computing m; =

A1
hinti/(CZh). Each corresponding signature is traced using standard meth-

ods (see section 6). If the trace is successful, the receiver of the signature is
punished for having given the incorect hint value; if there is an unsuccessful
trace, then the servers output “signing key corrupted”.

8 Claims

We claim that our scheme achieves anonymity (Theorem 1), revokable anonymity
(Theorem 2), unforgeability (Theorem 3) and illicit signature detection (Theo-
rem 4). The theorems are sketched in the appendix. A full version of the proofs,
omitted due to space limitations, is available from the authors upon request, and
will be part of the second author’s Master’s thesis.
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9 Appendix

Theorem 1: Let D denote the dishonest signature servers, and H the honest
signature servers.

An adversary A, who controls any set of less than or equal to t; tracing dishonest
servers S; j € D and dishonest receiver R, cannot break the anonymity of the
signature scheme, i.e., he is not able to determine whether match(s, ) holds for
a particular pair (s, 7) with probability non-negligibly better than a guess.

Outline of Proof of Theorem 1: Employing an oracle for generating valid
DSS signatures, we provide a simulator S for all the protocols. Each simulation
generates transcripts that cannot be distinguished from the real protocol tran-
scripts by an adversary A as above. We then compose the individual simulations
to form a simulator for the entire protocol. We show that the adversary .4 cannot
distinguish the transcripts generated during the simulation from the transcripts
generated by a real protocol. ;From this we can conclude that the adversary
cannot break the anonymity of the scheme. This must hold since the adversary
can produce the same transcripts himself by the use of the simulator and the
simulator does not have access to the secret key for tracing. O
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Theorem 2: The system achieves revokable anonymity, i.e., any quorum of
honest tracing servers is able to perform the following actions: (a) Given a
valid message-signature pair described by s; and the list of all signer-side tran-
scripts (71, ..., Ty), select the value 7;, such that match(s;, 7;). (b) Given a valid
message-signature pair described by s; and one signer-side transcript 7;, deter-
mine whether match(s;, 7;) holds. (c¢) Given a signer-side transcript 7;, compute
a value trace; such that given trace; and a value s;, a third party can determine
in polynomial time, and without any interaction, whether match(s;, 7;) holds.

We refer to [23] for the proof.

Theorem 3: The system achieves unforgeability, i.e., an adversary A, who con-
trols any set of less than or equal to ¢; tracing dishonest servers S; j € D and
dishonest receiver R’, cannot generate a signature that gets accepted as valid.

Outline of Proof of Theorem 3: Assume the contrary. Then it must be pos-
sible to construct a valid signature given only the shares of the secret signature
generation key x held by the ¢; dishonest servers. Since the secret key has been
shared with a (¢, n) threshold scheme, it is not possible to reconstruct the secret
key with less the ¢t + 1 shares. Therefore A only has shares that are statistically
uncorrelated to the secret key, this would by a simulation argumentation imply
that valid signatures could be generated without any secret knowledge. O

Theorem 4: The system is detecting illicit signatures, i.e., the signer/tracer is
able to check whether there exist a signer-side transcript 7 such that match(s, 7)
holds.

Outline of Proof of Theorem 4: There are exactly three types of valid sig-
natures: (1) those with correct hint values, (2) those with incorrect hint values,
and (3) those with no hint values. For each signature the signature servers gen-
erate, a valid or invalid hint is produced (which one depends on whether the
receiver is honest or not) and stored in the signer database, to which all writes
are detected by the signers, and therefore, to which only the signers can write.
When a signature is generated by the adversary, no hint is therefore stored in
this database.

Each signature (m,r, s) with a valid hint can be matched to its singature session
by computing hint = m®", which can always be done by a quorum of servers.
This value identifies the signing session. Each signature with an invalid hint can
be matched to its signing session by finding a pair (tag,, tagy) in the signer data-
base, such that mga”’f1 = tagp. This pair, which again identifies the session, is
robustly computed during the signing session, and so, must exist in the database
for valid signing sessions. An illicit signature has no session record stored. It is
not possible to produce a valid signature (m, r, s) on a known preimage M such
that this record matches a recorded hint value or tag value. The former holds
since the hint value determines the message m, and therfore also M; the latter
holds since a given triple (m, tag,, tagy) determines the value r, which would pre-
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vent a valid signature to be produced (we refer to a description of DSS for this.) O
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