Almost Optimal Hash Sequence Traversal

Don Coppersmith! and Markus Jakobsson?

L IBM T.J. Watson Research Center, Yorktown Heights, NY, 10598
RSA Laboratories, Bedford, MA 01730. URL: www.markus-jakobsson.com

V]

Abstract. We introduce a novel technique for computation of consec-
utive preimages of hash chains. Whereas traditional techniques have a
memory-times-computation complexity of O(n) per output generated,
the complexity of our technique is only O(log®n), where n is the length
of the chain.

Our solution is based on the same principal amortization principle as
[2], and has the same asymptotic behavior as this solution. However, our
solution decreases the real complexity by approximately a factor of two.
Thus, the computational costs of our solution are approximately %logg n
hash function applications, using only a little more than logs n storage
cells.

A result of independent interest is the lower bounds we provide for the
optimal (but to us unknown) solution to the problem we study. The
bounds show that our proposed solution is very close to optimal. In
particular, we show that there exists no improvement on our scheme
that reduces the complexity by more than an approximate factor of two.

Keywords: amortization, hash chain, pebbles, upper and lower bounds.

1 Introduction

Hash chains have been proposed as a tool for improving the efficiency of a variety
of practical and valuable cryptographic applications, e.g., [6-9, 12]. However, the
cost for computing the next value on a hash chain is a topic that has largely
been ignored. For long chains, this task may account for a quite noticeable — if
not overwhelming — portion of the total computational effort of the protocol.
The technique most oftenly employed (whether implicitly or explicitly stated)
is to compute each preimage by iterative hash function application to a common
seed. However, such a method — which clearly has a computational complexity
of O(n) for a chain of length n — is highly wasteful in that the same sequence of
values is repetitively computed. Another possible method, in which all values are
precomputed and stored, substantially reduces the on-line computational cost,
but has a staggering storage complexity of O(n). All straightforward combina-
tions of these two techniques can be shown to have a memory-times-computation
complexity of O(n), which is often beyond the reasonable for desirable param-
eter choices. As an example, one can see that such a high complexity would be
punitive in protocols like the broadcast authentication protocols by Perrig et al.
[7-9]. There, the delay between the transmission of a packet and the receiver’s

authenticity check of the same is determined by the amount of time between
the release of consecutive hash preimages. This makes short time periods (i.e.,
rapid hash chain traversal) desirable. At the same time, since their method is
intended for very inexpensive devices, the permissible ”allowances” for compu-
tation and storage are strict. Together, these restrictions drastically limit the
possible lifetime of such broadcast devices.

Influenced by amortization techniques proposed by Itkis and Reyzin [1],
Jakobsson [2,3] showed how to reduce the above mentioned memory-times-
storage complexity to O(log? n). This was accomplished by the introduction of a
technique in which multiple intermediary values are kept, but their values (and
positions in the chain) constantly modified. While the protocol of Jakobsson
stressed simplicity over efficiency, we take the opposite approach in this paper.
By introducing a set of tricks and new techniques, we are able to improve the
efficiency at the expense of simplicity — the latter both in terms of the protocol
and its associated proofs. Thus, our improved protocol allows for a reduction of
the computational requirements to slightly less than half of [2], while slightly
reducing the storage demands for most practical parameter choices.

Using a numeric example to illustrate the differences, we have that consecu-
tive preimages of a chain of length 23! can be generated using 31 hash function
applications and 868 bytes of storage in [2], while our algorithm only needs 15
hash function applications and 720 bytes of storage — both assuming the use of
SHA [11]. More generally, the computational requirements of our protocol are
|log2 v/n| hash function evaluations per output element. The storage require-
ments, in turn, are [logan] + [logz(logan + 1)] memory cells, where each cell
stores one hash chain value and some short state information. Note that these
are not average costs, but upper bounds on the cost per element that is output,
given a hash chain of length n.

In order to allow for these savings, it is necessary to shift from a strategy
with a very simple movement pattern to a more complicated strategy where the
per-element budget always is exhausted. (Another way to think about it is that
the reduction of the budget demands a wiser spending strategy under which no
resources are wasted.) Consequently, we develop a rationale for how to assign a
now reduced budget among a set of pebbles whose demands and priorities are
modified over time. Furthermore, we propose a protocol based on these design
criteria and show it to be correct.

Finally, we show that our strategy, and the related protocol we propose, are
near optimal. We do this by providing upper and lower bounds for the most
efficient algorithm possible, and compare the resulting complexity to that of our
protocol.

2 Intuition

The aim of our protocol is to compute and output a series of consecutive values on
a hash chain with minimal memory and computational requirements. We call the
two ends of our chain ”the beginning” and ”the end” of the chain, functionally

corresponding to the public vs. the secret keys of the scheme. In a setup phase,
the chain is constructed by choosing the end value at random and iteratively
applying the one-way function to get the value at the beginning of the chain.
We want to output all the values of the chain — starting with the value at the
beginning of the chain, and ending (not surprisingly perhaps) with the value at
the end of the chain. Each value in the chain (except the end value) is the hash
one-way function of the adjacent value in the direction of the end of the chain.
In other words, each output value is the hash preimage of the previously output
value. Therefore, previously output values are not useful in computing the next
value to be output, which instead has to be computed by iterative application
of the hash one-way function to a value towards the end of the chain.

Our solution employs novel amortization techniques to reduce the worst case
computational cost per element to the average cost. Simply put, we use the
known principle of conserving resources by not letting anything go to waste.
Technically speaking, this is done by assigning a computational budget per step
in the chain, and applying any ”leftover computation” towards the computation
of future elements. The contribution of this paper is a technique for computing
the desired sequence without ever exceeding the per-step budget, along with the
establishment of the required computational budget and memory demands.

In order to reach our goals, the leftover computation we apply towards future
elements to be computed must be sufficient to compute these. More importantly,
it must be sufficient to compute them on time. Thus, at each point in the chain,
the cumulative required expenditures must not exceed the cumulative computa-
tional budget.

Assume that we want to compute a value close to the beginning of the chain.
If no values along the chain are stored, then we have to perform an amount of
work proportional to the length of the chain, which we denote n. Let us now
introduce one ”helper value” at some distance d from the current chain element.
Then, the cost of computing the current value is that of d — 1 hash function
evaluations. The cost for the next value to be computed, in turn, will be d — 2
such evaluations. However, once the helper value is reached, the cost of the
next value will be that of reaching the endpoint of the chain — assuming we only
employ one helper value. One can see that the total cost is minimized if d = n/2,
i.e., the helper value is located on the mid-point of the chain.

If we can use two helper points (which corresponds to storing two extra
elements instead of one) then one could let the entire interval be split into three
equally long intervals, in which case the cost of computing the next element
would be upper bounded by n/3 hash function evaluations. On the other hand,
if we first split the entire interval in two equally long intervals, and then split the
first of these two into two sub-intervals, then we have upper bounded the initial
computational cost at n/4 hash function evaluations. This lower cost applies to
the first half of the entire interval, after which the distance to the next element
(which is the endpoint) would be n/2. However, if we — once we reach the first
helper point — relocate this to the midpoint between the ”global midpoint” and

the endpoint, we will maintain an upper bound of n/4. (See figure 1 for an
illustration of how the relocation occurs.)

(a) % . ; .
(k) ¥ .

R —
(C) + B & 1

Fig. 1. The figure shows the movement of helper values (squares) as the current position
(small arrow) changes. In (a) the positions right after setup are shown; (b) shows the
relocation of the first helper value as it has been reached. In (c), its relocation is
completed.

This assumes that we have enough remaining computation for this relocation.
Note now that if we have three helper points, we have more values to relocate,
but we also reduce the computational upper bound for each element (since the
intervals decrease in length with an increasing number.) We can see that using
approximately logn helper values, we will maximize the benefits of the helper
points, as we then, for every element to be computed, will have a helper point
at a maximum distance of two steps away.

If we use this approximate number of helper values, the cost of computing the
next value to be output is (on average) that of half a hash function evaluation,
making the budget for relocation the dominating portion of the required total
budget. When we relocate a helper point, the cost for computing its value at the
wanted location is proportional to the distance (in the direction of the endpoint)
to the next known value, whether this is a helper value or the endpoint itself.
It is clear that the more helper points we employ, the lower this cost will be.
However, the cost metric we are interested in minimizing is not computation
alone, but the product of computational complexity and memory complexity.

For each element to be computed and output we assign a budget, correspond-
ing to the computational upper bound per element. The computation of the next
element has the highest priority to access this budget, since for each step, one
has to compute and output the appropriate element. Any leftovers are assigned
to the computation of helper values. These are partitioned into high priority
helper values and low priority helper values. High priority helper values are re-
located into already rather small intervals, located close to the current element
(i.e., the element to be output in the current round). Low priority helper values,
in turn, traverse larger distances, and further from the current element. The low
priority helper values are only assigned those portions of the budget that remain
after the current element has been computed, and the high priority helper values
have exhausted their needs (i.e., arrived at their respective destinations.) Given

that low priority helper values are traversing distances large enough to make it
impossible for them to both get started and arrive in one and the same time
interval, we can with only two such helper values guarantee that there always
will be one left to ”soak up” any computational leftovers.

During the setup phase, the endpoint of the chain is randomly selected, and
the start point obtained by iterated hash function evaluation. This may be done
by a device with less computational limitations than the device that later will
compute and output the consecutive elements. During setup, the helper values
will also be initialized. The first helper value will be placed at the mid-point
between the endpoint and the starting point, thereby splitting the entire interval
in two. The ith helper value will be placed on the midpoint between the position
of the i — 1st helper value and the starting point. Thus, each helper value will
have a position and a value associated with them, where the value is obtained by
iterated hash function application of the endpoint value or a previously placed
helper value.

We show that our protocol is almost optimal. We do this by providing upper
and lower bounds for the optimal solution to the problem. We wish to point
out that while we do not know what the optimal solution is, we know that our
solution (which is not the optimal) is ”as good as one can get” — for all practical
purposes. This does not count potential improvements leading to a simpler or
shorter algorithm, but only refers to its memory and computational complexity.

Outline: We begin by introducing our method for computing the sequence of
hash preimages, first laying out the preliminaries (section 3) and then elaborating
on the protocol (section 4). In section 5, we present and prove our claims relating
to the completeness and correctness of the protocol, and relating to the upper
and lower bounds of the optimal solution to the problem we study.

3 Preliminaries

Definitions

We use the term hash chain H to mean a sequence of values < vg, v1,...,0;,... 0, >,
where v,, is a value chosen uniformly at random from {0,1}', and v; = h(vi41),
where & : {0,1}" — {0,1}" is a hash function or another publicly computable
one-way function. We refer to vy as the starting point, and to v,, as the endpoint.

We define the span n to be the length of the hash chain, i.e., the number
of elements in the sequence to be generated. We assume that n = 27 for some
integer o > 2.

We define the budget b as the number of computational units allowed per
element of the sequence that is output. Here, we only count hash function evalu-
ations and not other computational steps associated with the protocol execution.
This is reasonable given the fact that the computational effort of performing one
hash function evaluation far exceeds the remaining work per step.

We refer to each helper value, and to the endpoint, as a pebble. Each pebble p;
has a position in the chain and a value associated with itself. The position of the

start value is zero, and the position of the endpoint equals the span n. If position
is the position of a pebble, then its value is vposition. Additionally, each pebble is
associated with a destination (the position to which it is going); a priority (high
or low); and an activity status (free, ready, active, arrived.) Here, pebbles that
are not in use are referred to as free; these may be allocated to a particular task
once the need arises. A pebble that is ready has been assigned a task, but has not
yet started to move, while an active pebble in in motion. We use the ready state
for a so-called “backup” pebble. This is a pebble that will become a low-priority
pebble as soon as the active low-priority pebble reaches its destination. Finally,
a pebble is assigned status arrived if it located at its destination point, and is
still needed there (i.e., has not yet been reached by the “current” pointer, which
corresponds to the position of the current output value.) We let & denote the
number of pebbles used; the amount of storage needed is k times the amount
needed per value, plus the amount (registers, etc.) needed for the execution of
the protocol.

Goal

After performing a setup phase, we wish to generate the sequence H, element by
element (and starting from v;), using a minimal budget and a minimal number
of pebbles. We will demonstrate a method with required budget b = |o/2] and
using k = o + [loga(c + 1)] pebbles, where n = 27 is the number of elements of
H.

Design Guidelines

If a pebble is located at the position corresponding to the current output, we
say that this pebble has been reached, at which time it receives "free” status.
All pebbles with status free are assigned a new position, destination, state and
priority, according to guidelines that are set up to guarantee protocol complete-
ness. To explain the proposed protocol, we present these guidelines along with
their technical motivations.

”First things first”. At each step, we first compute and output the appropriate
hash chain value (which we call the current value); then, any remaining budget
is assigned to active high-priority pebbles, starting with the pebble with the
lowest position value (i.e., closest to the position associated with the current
output value.) First then, any still remaining budget is assigned to active low-
priority pebbles. This is to ensure that computational results that soon will be
needed are ready on time.

Controlling high-priority pebbles. The high-priority pebbles are started at
the "far end” of the first interval after the current value that does not already
contain an active pebble, counting only intervals of size greater than two. In
other words, if there is a pebble in free state, this will obtain the position and
value of the first interval of size four or greater in which there is no active pebble,

and will be given state active. Here, pebbles that just have been assigned to a
position are considered to be in the interval in question. When the pebble reaches
its destination (at the mid-point of the interval), it is given state arrived. Thus,
if the resulting intervals (half the size of the original interval) are at least of size
four, a new pebble may immediately be assigned a starting position equalling
the position of the pebble that just reached its destination.

High-priority pebbles are only allowed to be active in positions lower than the
active low-priority pebble, and are otherwise kept in free state. This is to make
sure that high-priority pebbles do not take too much of the available budget: it
slows them down to the benefit of low-priority pebbles when they complete their
imminent tasks.

Controlling low-priority pebbles. We want there always to be a low-priority
pebble that can “soak up” any remaining computational budget. We can achieve
this by (1) having one "backup” pebble that is not assigned to any task, but
which is ready to become the active low-priority pebble; and by (2) making each
low-priority pebble traverse a distance that is sufficiently long that it and its
backup cannot both complete before a new pebble becomes available. (When a
new pebble does become available, it will be assigned to become a backup pebble
if there is none, otherwise a high-priority pebble.)

According to our protocol, pebbles close to the current pointer have desti-
nations set two steps apart. Therefore, assuming they will arrive in a timely
fashion, they will be ”virtually spaced” two steps from each other. Thus, a peb-
ble will be reached by the current pointer every two moves (where a move is
the computation performed between two consecutive outputs). If the distance
low-priority pebbles need to travel from their inception until they reach their
destination is at least twice the budget per move, then a new pebble will always
be reached and relocated before the low-distance pebble and its backup reach
their goals. Therefore, if the backup low-priority pebble is converted to an active
low-priority pebble, a new backup pebble will be created before the converted
pebble reaches its goal. Thus, our requirement will be satisfied.

By taking this approach, we can guarantee that the entire budget of each step
will always be consumed, since there will always be an active low-priority pebble.
According to our suggested approach, we only need one active low-priority pebble
at the time, and one ”backup” low-priority pebble.

4 Protocol

Setup. The endpoint v, is chosen uniformly at random from {0, 1}l7 where we
may set [= 160. The sequence H =< vg,v1,...,%,...,U, > is computed by
iterated application of the hash function h, where v; = h(v;41), 0 < <n — 1.
Pebble p;, 1 < j < o, for 0 = loga n, is initialized as follows:

position «— 27
destination — 27
value < vy
status «— arrived.

The remaining pebbles, p;, 0 < j < k, have their status set to free. All the
pebble information is stored on the device we wish to later generate the hash
sequence; this device also stores counters current < 0 and backup <« 0, along
with the span n. The pair (startpoint, current) = (vg, 0) is output. The starting
point vy corresponds functionally to the public key of the chain.

Maintenance. In the following, we assume that the pebbles p;, 1 < j < k, are
kept sorted with respect to their destination, with the lowest destination value
first; and that pebbles that do not have a destination assigned appear last in
the ordered list. Consequently, the next pebble to be reached (from the current
position) will always be p;. When the status of the pebbles is changed at any
point, the altered item is inserted at the appropriate place in this sorted list.
We let LP (short for low priority) be an alias of the active low-priority pebble.
Thus, LP.position is the current position of the active low-priority pebble, in-
dependently of what pebble number this corresponds to. Similarly, BU refers to
the backup low-priority pebble.

Generation. The following protocol is performed in order to generate the hash
sequence; each iteration of the protocol causes the next hash sequence value to
be generated and output. The protocol makes use of two routines, place H P and
placeL P; these assign values to high priority resp. low priority pebbles according
to the previously given intuition. The corresponding algorithms will be described
after the main routine is presented:

1. Set available < b. (Set the remaining budget.)

2. Increase current by 1.

3. If current is odd then (No pebble at this position.)
output h(py.value), (Compute and output.)
decrease available by 1,

else (A pebble at this position.)
output py.value, (Output value, set pebble free.)

set pp.status < free,
if current = n, then halt. (Last value in sequence.)
4. For all free pebbles p; do (Reassign free pebbles.)
if backup = 0 then (Backup low-priority needed.)
pj.priority < low,
p;.status < ready,
BU « DPj,
backup «— 1,
else
Call placeHP (p;) (Make it high priority.)
. Sort pebbles.
6. Set j «— 1. (First pebble first.)

ot

7. While available > 0 do

if p;.status = active then (Only move active pebbles.)
decrease p;.position by 1, (Update its position...)
pj.value — h(p;.value), (... and value...)
decrease available by 1, (... and do the accounting.)

if p;.position = pj.destination then (Pebble arrived!)
pj.status < arrived,

if p;.priority = low then (A low-priority pebble arrived.)
LP — BU, (Backup becomes low priority.)
backup + 0,
Call placeLP, (Activate new low priority pebble!)
Sort pebbles.
increase j by 1. (Next pebble!)
8. Sort pebbles.
9. Go to 1. (Next element now.)

Routine PlaceLP. We begin by describing how one could compute the sequence
of values assigned to variables during calls to PlaceLP. (We later describe how
just ome such assignment can be computed, as opposed to an entire sequence.
We also elaborate on a method that is less wasteful of stack space.) The wanted
functionality of the routine is to compute the next starting point for a low-
priority pebble, along with the associated destination.

In the following, we use ”normalized” positions for ease of reading and unifor-
mity over different spans. To get a real position from a normalized position, one
multiples the latter by a value A, where X is the smallest power of two not smaller
than 2b, and where b is the budget. In other words, A = 2[log2 b1+1 Thys, the se-
ries of normalized starting points, starting with (4, 8, 6, 8,16, 12,10, 12, 16, 14, 16),
corresponds to a series (32,64,48,64,128,96,80,96,128,112,128) for b = 4,
A = 8. Similarly, the destination points and the distances between the start-
ing points for the pebbles and their destinations are described in normalized
terms.

When a free pebble is activized, it is placed on top of another pebble (located
at its starting point) and given a destination. The destination is at the mid-point
of the interval to the next pebble (in the direction of the current pointer). Thus,
the intervals are split in two; as the pebble arrives, a new pebble is placed on top
of it, with a destination of the next lower midpoint. If an interval is too small
to be split, the pebble is instead placed at the end of the next interval.

We associate the first split of an interval with the root of a tree. The children
of the root correspond to the splits of the resulting two intervals, and their
children by their respective splits. The leaves correspond to the smallest splits
of the intervals. Figure 2 shows the nodes of a small tree, and their order of
traversal, and how these corresponds to the order of pebble placement in the
hash chain. Figure 7?7 shows the starting points and destinations for one example
tree, according to the assignment strategy described below.

We say that the height of a tree is the number of layers of nodes it has. (Thus,
a tree consisting on only one node has height 1.) With each node of the tree, we

Fig. 2. The left part of the figure shows the desired destinations of pebbles, where the
number corresponds to the relative order of assignment. The relative order therefore
corresponds to the depth-first traversal order of the corresponding tree, shown to the
right. Note that the hash chain nodes correspond to a vertical projection of the tree
nodes.

associate a starting point; a distance; and a destination, where the destination
is the difference between the starting point and the distance.

The normalized starting point for the root of a tree of height j is start =
29+1 The normalized distance of a node at height 4 in the tree is dist = 2¢71;
thus the distance of the root is 297!, and leaves of the tree all have normalized
distance dist = 1. The normalized destination dest of any node (and the root in
particular) is the difference between its starting point and distance, i.e., dest =
start — dist. Finally, the starting point for a left child is its parent’s destination
value, parent.dest, while it is the parent’s starting value parent.start for a right
child.

Consider the sequence of assignments of start and dest that one obtains from
performing a depth first search of a given tree (with the left child always traversed
before the right child). That is the sequence of assignments corresponding to
the associated initial interval (i.e., the interval before splitting), as illustrated
in figure ?7. Consider further the sequence of such assignments one gets from
traversing a forest of such trees, where the first tree has height one, and each
tree is one level higher than its predecessor. That is the sequence of normalized
assignments we need in our protocol.

Each call to PlaceLLP first computes such a pair of normalized values, all from
the above described sequence; these are then multiplied by A and the product
returned as the result of the function. Thus, it sets

LP.priority < low
LP.status <+ active
LP.position <« X start
LP.destination < X dest

As soon as Astart > n, no assignment is performed, since there is no need for
low priority pebbles any longer. Any calls to PlaceLP after that return without
any assignment.

Claim: The routine PlaceLP generates a sequence of elements, where the ith ele-
ment of the sequence corresponds to the pair of starting position and destination

1 1916,4, 12)
2 ¢ s
N ¥ N
WA WA A
3 4

g 10 12 14 16
(10,1, 912, 1, 113(14, 1, 1) (16, 1, 15)

Fig. 3. The left part of the figure shows the desired movement pattern of low priority
pebbles in the interval between normalized positions 8 and 16, where the numbers on
the arrows correspond to the relative order of the movements. The right part of the
figure shows the tree structure from which these movements are obtained. The node
number corresponds to the relative order of the movement, and is obtained by depth-
first traversal of the tree. The triple associated with a node is the (starting point,
distance, destination) of the corresponding pebble. A tree of height 2 is used for the
normalized interval 4-8, and one of height 1 for the interval 2-4. Similarly, larger trees
are used for later intervals.

of the ith low-priority pebble to be activated. The starting point corresponds
to that of a pebble already placed on the hash chain, and the destination cor-
responds to the middle point between this same pebble and the closest pebble
in the direction of the current pointer. The distance between starting point and
destination is at least twice the budget per step that is available for moving peb-
bles, which guarantees that a recently placed low priority pebble does not reach
its destination before another pebble has been activated. Once such a pebble
does reach its destination, a “backup low-priority pebble” is activated by being
turned into a standard (active) low-priority pebble. Once a new pebble is reached
by the current pointer (at which time it is redundant in its current position, and
needs to be relocated), such a pebble is made into a backup low-priority pebble,
if the old such pebble has been activated.

Routine PlaceHP. The routine for computing the next location for a high-priority
pebble is similar to the above, its main differences being that (1) the real and
normalized values coincide, and (2) after the trees in the forest have reached
height logs A, they stop growing. Here, as before, A = 2[1092b1+1 where b is the
budget per output element produced.

The starting position of the jth tree is start = 29%! for j < logs A, and
start = A(j — loga) for j > loga A. As before, the starting point for a left child
is its parent’s destination value, parent.dest, while it is the parent’s starting
value parent.start for a right child. The distance of a node at height 7 in the tree
is dist = 271, The destination, as before, is the difference between its starting
point and destination, i.e., dest = start — dist.

Before any assignment is made, it is verified that start < LP.position, i.e.,
that the assignment in question is to a position before the active low priority

pebble. If this is not the case, no assignment is made at this point, and the
comparison re-performed at the next call to the routine. Otherwise, the following
assignment is made to parameter p; to the routine:

pj.priority < high
pj-status < active
pj-position « start
p;.destination « dest

Claim: The routine PlaceHP generates a sequence of elements, where the ith ele-
ment of the sequence corresponds to the pair of starting position and destination
of the i¢th high-priority pebble to be activated. The starting point corresponds
to that of a pebble already placed on the hash chain, and the destination cor-
responds to the middle point between this same pebble and the closest pebble
in the direction of the current pointer. The starting point is chosen as a point
between the current pointer and the active low-priority pebble, as close to the
current pointer as possible, such that the distance between the starting point
and the destination is at least two.

Memory Complexity. In order to conserve working space, one can opt for a
solution that does not use a stack, but which recomputes the state from scratch
when needed. One variable would store the height of the tree; one would store the
number of steps (using depth-first search) from the root. Additionally, we need
variables for start, dist and dest. To compute these values, we would (at each
time) begin with their starting assignments, and then modify them according to
the tree traversals leading to the wanted number of steps from the root. This is
done in accordance with the respective assignments, as above.

The maximum tree height for PlaceLP is 0 —logs A— 1, since this corresponds
to a normalized starting point of 2°~* and a starting point of 2°. Thus, this vari-
able needs [logs 0| bits. For PlaceHP, the maximum height is logs A, requiring
loga[loga[A]] bits of storage. A tree of the maximum height has 20 ~l092A=1 1
nodes for PlaceLP, and 2* — 1 nodes for PlaceHP. Thus, the distances from
the root can be represented with ¢ — loga A — 1 respective A bits. Finally, the
maximum value of the last three variables is o bits for each one of them, since
the maximum value they can be assigned is 2. (These only keep state within a
computation, and so, we do not need one set for each algorithm.)

Therefore, the memory requirements of PlaceLP and PlaceHP are less than
40 4+ logz 0 + A — 1 bits. This is dwarfed by the memory requirements for the
pebbles, requiring 160 bits each, resulting in a total of 160(c + [logz(c + 1)])
bits.

5 Claims

Consider a span n = 27, a budget b = |0/2] and k pebbles, for k = o+ [loga (o +
1.

We refer to the sum of the budgets from the setup stage until a particular
step as the cumulative budget at the step in question. We say that the protocol
with a budget restriction of b and a storage restriction of k succeeds at step j
if and only if it outputs the jth value v; of the hash sequence during this step,
and that the protocol succeeded at step j — 1. The protocol is said to succeed
(by definition, and due to the setup procedure) at step 0 — this corresponds to
the setup phase, on which we do not place any strict restrictions in terms of
computation and storage.

Theorem 1: (Completeness.) The protocol succeeds at step j, 1 < j <n, for a
span n = 27, budget b = |0/2] and k = o + [loga(o + 1)] pebbles.

The proof of the theorem will be based on the following lemmata, all of which
relate to the above assignments for n, b and k. Recall that A is defined to be the
smallest power of two not smaller than 2b.

Lemma 1: (Bootstrapping.) The protocol succeeds at step j, 1 <j < A.

Proof of Lemma 1:

We will consider two cases: A < 8, and A > 8. Recall that the cost of moving one
step ahead equals the distance from the position we move to the next (forward)
pebble. Recall also that A is defined to be the smallest power of two equal to or
larger than 2b, and thus, A < 4b.

The first case corresponds to the two possibilities A = 2 or A = 4. For A = 2,
we have b = 1. We need budget 1 to compute vy from ve (where there is a
pebble), and zero budget to obtain ve. For A = 4, we know that b = 2. Since
there are pebbles at positions 2 and 4, the budgets to reach these are zero, and
the budget to reach step 1 and 3 from the step before is one. Therefore, the
lemma holds for the first case.

For the second case, i.e., A > 8, we know that there is one pebble at A, one at
A/2, and one at \/4, since we start with pebbles at each position that is a power of
two, and which is in the interval between 0 and n. Consider the first two quarters
of the interval between 0 and A. Notice first that the budget will be sufficient for
each step of these two quarters, since the pebbles are spaced A/4 apart, and the
budget is b > A/4 (given how A is defined). The traversal cost for both of the
quarters is upper bounded by (A\/4—1)+(A/4—2)+...+2+1+0= (A\/4—1)\/8,
giving a total of (A\/4 — 1)A\/4. The total budget assignment for this first half is
(A/2)b. Since b > A/4, we have that the cumulative budget is (A\/2)A/4. Thus,
the budget ”surplus” for the first half is at least (A/2)\/4 — (A\/4 — 1)\/4 =
M4+ 1D)A/4 > N/4.

This surplus will be applied to moving pebbles outside the first half of the
interval, since any pebble movement inside the first half could only lower the
expenditures for this portion, which would cause an even larger surplus. The
surplus, in turn, is always spent on moving pebbles, with the closest high-priority

pebbles receiving priority. The first pebble outside the first half of the interval
would start at A, and have destination 3A/4. Given that the surplus of the first
half of the interval is at least A/4, the pebble would reach its destination by the
time the current position is \/2.

Consider now the third and fourth quarter of the interval between 0 and .
We have concluded that when the current position is A/2, there are pebbles at
both position 3A/4 and position A (where the latter pebble has been there since
the setup phase.) We know that b > /4. Thus, the budget will be sufficient for
each step of the two last quarters of the interval, and we see that the protocol
will succeed at step . This concludes the proof.

Lemma 2: (Discrete points.) The protocol succeeds at step j = 2A + 1, 0 <
i <o —logs M, if it succeeds at step 2¢\.

Proof of Lemma 2:

Assume that we have arrived at position j = 2%\ for some 0 < i < o —loga A — 1.
(This means that the protocol succeeded up until this point.) We wish to prove
that the protocol will succeed for the next step, too. In order for this to occur,
the next pebble must be at most b + 1 steps away from step j, or the budget
will not suffice. We will show that there will be a pebble at j + 2, which would
make the lemma hold, since b > 1.

At the time when we are at step j, the total incurred costs for pebbles
equal the cost for filling the space between 0 and j with pebbles, plus that for
populating (with exponentially increasing intervals) the interval between j and
2j. We will argue that this sum is equal to the cost of populating the interval
between 0 and j only, were this interval empty. This will result in a simpler way
of determining the total required pebble expenditure up until step j.

Consider the location of all pebbles in the interval between 0 and j at the start
time. These pebbles are located at positions 2,4, 8, ...,7/2. We want pebbles at
positions j42,j+4,j+38,...,j+;/2 when we are at position j. Due to the setup,
there will already be a pebble at 25 = 2/*1). The cost of placing the pebbles at
(j+2,5+4,7+8,...,5+7/2), given the pebble at 27, is identical to the cost
we would have incurred if we wanted to place pebbles at 2,4,8,...,7/2, given
the pebble at j, since the relative distances from j resp. from 2j are identical
for the two sequences. We can therefore substitute the cost for the real sequence
between j and 2j by the hypothetical cost for the interval 0 to j.

Therefore, the total pebble expenditures at step j will equal the total pebble
expenditures we were to incur if we were to fill an empty interval between 0 and j.
The cost of filling an empty interval between 0 and j involves moving one pebble a
distance j/2; two pebbles a distance j/4 each, four pebbles a distance of j/8 each,
etc. Filling the space means that (over time) every even position in the interval
has a pebble. Thus, the total pebble expenditure is Zf:zgﬁj_l 2r=1597F where
2%~1 is the cardinality and j2~" is the associated cost. This total expenditure
can be seen to equal j/2(logaj — 1).

If at any time we are either one or two steps from a pebble (where our position
corresponds to the value being output), then the total expenditures for moving
a step ahead is either zero (if we are at a position with an odd number, meaning

next position has a pebble) or one (if we are at an evenly numbered position.)
Thus, the total ”stepping” expenditures up until step j are j/2.

We see that the total expenditures up until step j = 2°\ would be j/2(logs j —
1)+ /2 in order for there to be pebbles at positions (j+2,j5+4,...,5+7/2) at
the time the current position reaches step j. This equals % jloga j. Given that for
each of the j steps, we are assigned a budget b, the total budget up until that
point will be jb. We will be successful if b > %loggj. This quantity will be the
largest for the end of the interval that the proof is valid for, i.e., 2 = 0 —logs A—1.
Plugging in 4 in the formula for j gives us j = 2°7%°92A=1\ = 29~1 Thus, if
b > %(a — 1), then the lemma holds. According to the specifications, we have
b = |o/2]. Therefore, if the protocol succeeds at j = 2°\, then it succeeds at
j+1=2\+1, for 0 <j <n/2, which concludes the proof.

Lemma 3: (Intervals.) The protocol succeeds at step j = 2°71)\ if it succeeds
at step 2°\ + 1.

Proof of Lemma 3:

Assume that the protocol succeeds at step j = 2°X + 1. We wish to prove that
then, the protocol also succeeds at step 25 — 2 = 2¢*!\. This will be shown
using a symmetry argument. Consider intervals of size 2'\. Consider first such
an interval starting at position 1 and ending at 2°), and then one starting at
position 2¢)\ 4 1 and ending at 20T\,

Assume that the current position is at the beginning of the second interval.
Assume further that the relative positions of the pebbles in the second interval
(in relation to the current position) are identical to the relative positions of the
pebbles in the first interval (in relation to the current pointer when located in the
beginning of the first interval). Then, the required expenditures to reach the end
of the second interval from its beginning must equal the required expenditures
to reach the end of the first. This is so since the resource allocation strategy is
the same for both intervals, namely that pebbles close to the current position
are given priority over pebbles further away. Therefore, if the budget is sufficient
to reach the end-point of the first interval, then it is also sufficient to reach the
end-point of the second.

We know that the first interval will have pebbles at positions 2,4,8,...,j
when we are at position 1. As was shown in Lemma 2, the cumulative budget
available to pebbles at step j is sufficient for the placement of pebbles at positions
Jj+2,54+4,7+8,...7+3j/2, and we know that there already is one (due to
the setup) at position 2j. Therefore, the required expenditures in the interval
between 2!\ 4 1 and 27+1)\ are the same as those for the interval between 1 and
2¢X. This concludes the proof.

Proof of Theorem 1: The theorem follows from the above lemmata. Lemma
1 establishes that the protocol succeeds for j, 1 < j < A. Then, Lemma 2 shows
that it succeeds for A\+1 (i.e., setting ¢ = 0), and lemma 3 shows that it succeeds
for all values up until 2\ (again using ¢ = 0). Then, using ¢ = 1, lemmata 2 and
3 establish that the protocol succeeds up to position 4\. We apply lemmata 2
and 3 iteratively, and for increasing values of i, ending with i = 0 — 1 — logs A,

finally establishing that the protocol succeeds for j = n, which completes the
proof.

In the following, we show that our solution is almost optimal. More par-
ticularly, we consider the product of the number of hash function evaluations
needed, and the number of storage cells required, where each storage cell holds
one hash chain value and some short state information. Then, the complexity
of the optimal solution is %Zog2 n per output element, while the complexity of
our solution is approximately %log2 n — more precisely, it is %Llog n|([logan] +
[log2(logam + 1)]). Thus, we are (practically speaking) no more than a factor
of two away from the optimal solution in terms of computation-times-storage
complexity.

Theorem 2: (Lower bound.) The optimal solution to the problem has a memory-
times-computational complexity of at least ﬁ lg2 n, where n is the length of the
hash chain and k is the number of pebbles.

Proof of Theorem 2: We wish to show that the cumulative budget — the total
cost of processing a string of length n using k& pebbles — is at least ﬁ lg‘2 n,
which implies that the amortized cost per evaluation is at least ﬁ lg2 n. This, in
turn, will imply that the budget (worst-case cost per evaluation) is also at least
ﬁ lg? n. The optimal case is k = % lgn, where the amortized cost per evaluation
is also % Ign.

Let g(n, k) be the required cumulative budget for covering a string of length
n with k pebbles, excluding the initial cost (n) of setting up the pebbles.

Suppose that the furthest pebble is at position n — T, at the last time that
it is used (cloned or used directly). Then we must cover an interval of length
n—T with k—1 pebbles (not using the kth pebble, which is stuck at position n),
expend energy T to lay down the pebbles in the remaining interval, and cover
that last interval with k pebbles. Optimizing over choice of T, we would have

g(n, k) = minlg(n =Tk = 1) + T + g(T, k)].
. . lo2
We want to show, by induction, that g(n, k) > "2,

The inductive step will go through if we can show that, for all n, T, k, we
have h(k,T) > 0, where for fixed n we define

1g? —Mg?(n-T T1e?T
gt (=Dl -T) . TIT

Wk T) = == Ak —1) Ak

For convenience we set L = Ign. We evaluate h and its derivatives around the
point (ko = L/2,Ty = n/2), which is near its global minimum. We have:

__ nlL? %(L*1)2 n %(L*1)2
h(L/2,n/2) = Zlﬁ)l) oy T2 T T
= 3L(=3) ~ 7Tgn
oh _ L2 2(-1)? 3(L-1)?
ﬁ(L/Zn/Q) - +47(1%)2 - z(%_1)2 - 24(%)2

n(=3L2+6L—2) __ —3n
- L2(L-2)2 ~ 1gZn

dh _ _lg(n/2)+2(ge) lg(n/2) lg®(n/2)+2(lg e) lg(n/2)
o ([,/2,1/2) = — o 4((__1)) +14 it
_ L—1)"+2(L—1)lge 1
WEng)
(L—1)"52(L-1)1g e+ L(L—2)
L(L-2)
2(L—1)Ilge—1 __ 2lge
L(L-2) ~ gn

2 nig2 n n
%(L/Znﬂ): St s s

l\'}
/\
\/
w
N
—~
N
|
—-
—
w

2(%)3 5-1)2
_ n(4L4+4L3—44L2+56L 16) . 4n
- L3(L—-2)3 ~lgZn

1g2(n/2)+2(1ge)lg(n/2) 1g2(n/2)+2(lge)lg(n/2)
Dh (L)2,n/2) = Pl e e e
_ (L4 (L=1)+2(lge)(L—1)) _ _4
- L2(L—2)2 ~lgn

P (L/2,n)2) = Q(Ige)“gjl_gf’;/f”/("/” i 2<1ge)(lge+1(g(7)z/2>>/(n/2>
_ (AL-9)(ge)lget(L-1) - 4lge ’
- nL(L—2) n

Using the first-order approximations of the first and second derivatives, we cal-
culate that the function h(k,T') will reach its global minimum at about

k= ko+at% o~ L4407

g3
T:TO+(4lgge 4)f ~ __332lgn
and its value there will be n
O(T)a

21gn7 lg“n

which is positive for n sufficiently large. This concludes the proof.

References

1.

2.

10.

11.

12.

G. Itkis and L. Reyzin, ”Forward-Secure Signatures with Optimal Signing and
Verifying,” Crypto ’01, pp. 332-354.

M. Jakobsson, “Fractal Hash Sequence Representation and Traversal,” ISIT ’02;
full paper at www.markus-jakobsson.com.

M. Jakobsson “Method and Apparatus for Efficient Computation of One-Way
Chains in Cryptographic Applications,” U.S. Patent Application 09/969,833

L. Lamport, ”Constructing Digital Signatures from a One Way Function,” SRI
International Technical Report CSL-98 (October 1979).

R. Merkle, ”A digital signature based on a conventional encryption function,”
Proceedings of Crypto '87.

S. Micali, ”Efficient Certificate Revocation,” Proceedings of RSA ’97, and U.S.
Patent No. 5,666,416.

A. Perrig, R. Canetti, D. Song, and D. Tygar, ”Efficient and Secure Source Au-
thentication for Multicast,” Proceedings of Network and Distributed System Se-
curity Symposium NDSS 2001, February 2001.

A. Perrig, R. Canetti, D. Song, and D. Tygar, ”Efficient Authentication and
Signing of Multicast Streams over Lossy Channels,” Proc. of IEEE Security and
Privacy Symposium S & P 2000, May 2000.

A. Perrig, R. Canetti, D. Song, and D. Tygar, ” TESLA: Multicast Source Authen-
tication Transform”, Proposed IRTF draft, http://paris.cs.berkeley.edu/ ~
perrig/

K. S. J. Pister, J. M. Kahn and B. E. Boser, ”Smart Dust: Wire-
less Networks of Millimeter-Scale Sensor Nodes. Highlight Article in
1999 Electronics Research Laboratory Research Summary.”, 1999. See
http://robotics.eecs.berkeley.edu/ ~ pister/SmartDust/

FIPS PUB 180-1, ”Secure Hash Standard, SHA-1,”
www.itl.nist.gov/fipspubs/fip180-1.htm

S. Stubblebine and P. Syverson, ”Fair On-line Auctions Without Special Trusted
Parties,” Financial Cryptography ’01.

