Theft-Protected Proprietary Certificates

Alexandra Boldyreva! and Markus Jakobsson?

! Dept. of Computer Science & Engineering, University of California at San Diego,
9500 Gilman Drive, La Jolla, CA 92093, USA
aboldyre@cs.ucsd.edu
http: //www — cse.ucsd.edu/users/aboldyre
2 RSA Laboratories, 174 Middlesex Turnpike, Bedford MA 01730, USA
mjakobsson@rsasecurity.com
http : //www.markus — jakobsson.com

Abstract. The notion of proprietary certificates [8] was recently intro-
duced in an attempt to discourage sharing of access rights to subscription-
based resources. A proprietary certificate is a certificate on a public key
— the so-called proprietary key — that contains some information related
to another (so-called collateral) certificate and has the property that if
the owner of the proprietary public key reveals the corresponding (so-
called proprietary) secret key, then the collateral secret key (correspond-
ing to the public key in the collateral certificate) is automatically re-
leased. Thus, if a service provider requires all users to use proprietary
certificates linked with collateral certificates corresponding to resources
the users always wish to keep private — such as access to 401(k) accounts,
the user’s criminal history, etc — then this will discourage the access rights
sharing. However, the original solution for proprietary certificates over-
looks the possibility of accidental sharing, namely, sharing caused by
theft of the proprietary secret key which would lead to immediate loss
of the collateral secret key, making wide-scale deployment of proprietary
certificate approach unlikely. In this paper we discuss what steps can be
taken towards making proprietary certificates approach more practical.
While our solution preserves all the properties the original solution of [§]
achieves, most importantly, protection against intentional rights sharing,
it satisfies an additional property, namely, theft protection.

1 Introduction

1.1 Proprietary Certificates

One of the main goals of Digital Rights Management (DRM) is to protect digital
content from illegal or inappropriate use. In various PKI applications, digital
certificates can provide a partial solution to this problem. Namely, in order for a
service provider to restrict access to appropriate users, it can verify each user’s
identity and authenticity of the user’s public key by having the user present
a valid digital certificate. However, this does not fully solve the problem. A
registered user can share access rights to the resource (thus violating DRM



policies) by lending his or her certificate and the corresponding secret key to
another party.

The problem of preventing access rights sharing has been addressed in the
literature. The high level idea of the existing solutions is to force a user who
shares a secret key which gives access to some service to additionally share some
other sensitive information, e.g. a credit card number. In most solutions (see, for
example, [6,15]) a service provider or a certification authority must be trusted
since it learns this sensitive information.

A solution proposed recently by Jakobsson, Juels and Nguyen [8] attempts
to solve the problem of access rights sharing without a trusted third party re-
quirement. The authors introduce a proprietary certificate, which is a way of
implementing digital certificate that discourages unwanted sharing of resources.
A proprietary certificate may be used where a standard certificate may other-
wise be employed but where the service provider wishes to discourage resource
sharing. For example, it may be used for verifying and granting access rights to
subscribers of a stock quote service while discouraging them from sharing their
access with non-subscribers.

Subscribers are discouraged from sharing access rights with others by “link-
ing” the secret key associated with the user’s certificate (called the proprietary
secret key and certificate) to a second secret key corresponding to another cer-
tificate (called the collateral secret key and certificate). The certificates which
can serve as collateral ones are those which correspond to the accounts that are
supposedly very important and long-lived such as bank accounts, 401(k) plans,
health or criminal records, etc.

The link between the proprietary and collateral secret key guarantees that
anybody with knowledge of the proprietary secret key can compute the cor-
responding collateral key. Thus, users who allow others access to the resource
associated with the proprietary key are punished by automatically relinquishing
control over the resource associated with the collateral key. If the collateral key
grants access to the user’s bank account or appending to his criminal record,
this would clearly make sharing undesirable on a large scale.

More precisely, [8] considers a set of users and certification authorities (CAs)
and proposes a certification protocol run between a user and CA in order to
produce a proprietary certificate. We note, that CAs is in many cases can be
functionally similar or identical to service providers, as the latter may often reg-
ister users by pseudonyms or public keys — whether used internally or globally.
For this reason, we will use the terms service provider and certification authority
interchangingly onwards. At a high level, the approach of [8] is to include in pro-
prietary certificates a ciphertext of a special form, where the secret key allowing
the ciphertext to be decrypted is a proprietary secret key. Decrypting the cipher-
text, in turn, results in the collateral secret key. In order not to require CAs to
know proprietary and collateral secret keys of the users the solution of [8] uses
fair encryption methods of Poupard and Stern [12]. We review fair encryption in
Section 2.2 and discuss the solution of [8] and the properties it achieves in more
detail in Section 3.



1.2 Vulnerabilities of Proprietary Certificates

While the original construction for proprietary certificates [8] achieves its stated
goals, it overlooks the possible scenario in case of theft of the proprietary secret
key that would lead to immediate loss of the collateral secret key. Hence, theft
of the proprietary key grants the intruder full access rights to all resources as-
sociated with both the proprietary and corresponding collateral keys. In other
words, their approach punishes not only intentional sharing, but also acciden-
tal sharing. This would, with a big likelihood, make large-scale deployment of
such a scheme unlikely, given the threat of device loss and theft, burglaries, and
computer viruses.

1.3 Owur Goals

In this paper, we suggest measures which can help to overcome the weakness of
the proprietary certificates approach and to make it more practical. We try to
balance the requirements to punish intentional sharing with the desire to avoid
penalizing accidental sharing, which is a seemingly contradictory problem. We
propose a proprietary key certification protocol where the resulting proprietary
certificate has an additional theft protection property. Theft-protected propri-
etary certificates meet all the properties of proprietary certificates and satisfy
an additional theft-protection property. Namely, derivation of a collateral secret
key from the proprietary secret key and the proprietary certificate is possible
only after some predefined time delay. During this time delay, however, no in-
formation about a collateral secret key can be obtained, even by the party with
knowledge of a proprietary secret key. Thus, the advantage is that the legitimate
user has time to take measures in case of accidental exposure of a proprietary
secret key.

Such approach would be useful for the settings where it is reasonable to
assume that the collateral secret key is stored more securely than the proprietary
secret key and that the owner of the device containing proprietary keys would
know of a potential compromise of them. For example, if the proprietary keys
reside on a palmtop computer or a cellular phone, loss of such device would
indicate secret key compromise. Similarly, if the proprietary keys reside on a
desktop computer, it would be prudent to assume key exposure if the office
containing the computer is burglarized or if security software detects viruses,
hacker activities or intrusion. For various less obvious techniques which help to
detect secret key compromise see [9].

If the user reports theft of his key within this time period, the access keys for
the proprietary and collateral services may be cancelled and re-newed, preventing
both the accidental and intentional “share holder” from accessing either resource.
Potentially the user can repeatedly share re-newed keys, however, various policies
can be enacted to avoid this — a user who time after time cancels and re-keys
an account may not get a renewed key after some time. This will satisfy both
requirements, as it would provide security against theft and losses, while still
discouraging sharing.



1.4 The Solutions

Technically speaking, the core of our solutions can be described as implementing
time delays for the routine for deriving collateral secret keys from proprietary
secret keys and certificates. We provide the solutions for time delays measured
in real time or delays measured in CPU time. Our solution for the real time
delay requires that the proprietary CAs support additional interaction with the
parties regarding release of information related to collateral keys. In contrast,
the CPU time delay solution does not require such communication, since the
derivation of the collateral key can be done locally by any party with knowledge
of the proprietary secret key and certificate. While CPU time is relative to
processor speed, our solution withstands efforts to speed up the derivation of
collateral keys by the use of parallelization of computation. Both of our solutions
use fair encryption, and the CPU delay solution uses the notion of time-lock
puzzles introduced by Rivest, Shamir and Wagner in [13]. We review the latter
in Section 2.3 and describe our solutions in detail in Section 4.

In Section 5 we discuss various techniques of how service providers can help
detecting secret keys compromise, and describe how additional features, such as
user alerts can be implemented on top of our basic protocols, and used according
to suitable policies.

1.5 Business Model

It is clear that subscription services benefit from the establishment of proprietary
certificates to discourage their users from sharing access to the resources with
others. Honest users, in turn, may also benefit from such an arrangement by a
reduction of subscription fees and improved access, where the latter is due to
the decreased access by non-registered users. Turning to the collateral accounts,
there are two distinct situations. A first type of collateral account has the prop-
erty of being intrinsically valuable to its owner, or where limited access rights
are vital. Examples of this type is a 401(k) account or an account with append
access to criminal records. These accounts will exist independently of the use
of proprietary certificates. A second type of account is artificially made to be-
come valuable. For this second type, one needs to provide an incentive to create
and maintain accounts. We suggest the possibility of a class of service providers
whose sole business is to support collateral accounts. Thus, such parties would
certify users after having received a deposit or other security from them, and
would either charge the user for the service (the interest, say), or receive pe-
riodical payments from the proprietary service providers. Note that users may
establish one such “collateral account” and use it as collateral for several service
providers.

2 Building Blocks

Here we outline the existing primitives and notions we will use in our work.
Since our solutions support two main key types used in proprietary and collateral



certificates we first recall the structure of RSA and discrete-log based keys. Next
we review the notion of fair encryption [12] that is used in [8] and our solutions.
Finally we outline time-lock puzzles introduced in [13], which we use for our
CPU-time-delay solution.

2.1 Types of Keys

RSA keys Let k be the security parameter. In order to create an RSA type key
pair a user picks at random two k-bit primes p, ¢ and computes N = pq. He then
picks a random number e € Zy coprime to ¢(NN), where ¢(-) is a Euler’s totient
function. The public key of the user is (IV, e). The user also computes d such that
ed = 1 mod ¢(N). The secret key of the user is (NV,d). Usually k& = 512. These
types of keys are used in the standard RSA encryption and signature schemes
[11] and in many others schemes and protocols.

Discrete-log (DL) keys Let k be the security parameter. In order to use discrete
log (DL)-based keys, a user picks at random a k-bit prime p and a prime ¢ such
that ¢ divides p— 1. He then picks a random generator g of the group of order g.
He picks a random element z of Z;, and computes y = g*. The public key of the
user is (p, q,g,y) and the corresponding secret key is (p, ¢, g, ). Often all users
use the same values p, q, g. Usually k = 1024. These types of keys are used in El
Gamal encryption and signature schemes [7], Cramer-Shoup encryption scheme
[4], Schnorr signature schemes [14], etc.

2.2 Fair Encryption

Following the definition given in [2], a verifiable encryption is a two-party proto-
col between a prover P and a verifier V' who initially have access to some public
key pk;, some public value p and some binary relation R. At the end of the
protocol the verifier obtains a ciphertext under pk; of some value z and accepts
if the relation R between x and p holds and rejects otherwise. The properties
of the protocol is that V' can accept “invalid” x only with negligible probability
and that V' learns nothing about z.

A fair encryption is a verifiable encryption where the relation is true if z is
a secret key sks corresponding to the public key pk, = p. In other words, the
prover convinces the verifier that a given ciphertext is a valid encryption of the
secret key sko corresponding to pk, which can be decrypted using sky, the secret
key corresponding to pk; such that the verifier does not learn anything about
sko. Poupard and Stern [12] give efficient solutions for the fair encryption of the
RSA- and discrete-log-type secret keys using the Paillier encryption scheme [10].
As noted in [8], the protocols of [12] are applicable for the case when pk; is
RSA-type key since the Paillier encryption (resp. decryption) can be performed
under RSA public (resp. secret) keys (wlog we assume that Paillier public key
G is equal N + 1, where N is a public modulus of pk,). [8] provides the solution
for fair encryption of both types of secret keys under the discrete-log-type public
keys. Their solution for fair encryption of RSA type keys under the DL-type keys



has a an additional requirement that a user’s RSA modulus N be a product of
two safe primes p, q, where (p —1)/2 and (¢ — 1)/2 are both large primes.

Therefore, there exist solutions for fair encryption of both types of secret keys
under the both types of public keys. All the protocols of [12,8] can be made
non-interactive, so in this paper we will assume so. We will use the notation
FEpk, (skz) to denote the fair encryption of the secret key sky under the public
key pk,.

2.3 Time-Lock Puzzles

Rivest et al. [13] provide a solution for the problem of encrypting a message in
such a way so that no one can decrypt it until a pre-defined amount of time has
passed. It might seem that the problem has a trivial solution, namely, one should
encrypt the message using some symmetric encryption scheme using some not
very long key. Then in order to decrypt this ciphertext one would need to do
exhaustive key search which would take some time depending on the length of
the key. As [13] notes, this solution is not satisfactory. First, a brute-force key
search is parallelizable and second, the actual running time of the decryption
process will depend on the order in which the keys are examined.

We now sketch the solution of [13]. Assume A wants to encrypt a message
M with a time-lock puzzle for a period of T seconds. A picks at random two
large primes p, ¢ and computes n = pgq, ¢(n) = (p—1)(q—1). She then computes
t =TS where S is the number of squarings modulo n per second that can be
performed by the potential decryptor. Then A picks a long random key K for
some secure symmetric encryption scheme and encrypts M using K. Let us call
the resulting ciphertext Cps. She then computes C'x = K + a2' mod n for some
random a,1 < a < n. Since A knows ¢(n), she can do this efficiently. The time-
lock puzzle will contain (n,a,t,Ck,Cr). In order to extract M anybody would
need to compute a® and the only way to do this without knowing ¢(n) is to
perform ¢ sequential squarings. The time delay ensured by this solution is not
really absolute real time but some time period depending on the CPU power of
the decryptor. We will refer to this as CPU time delay.

3 Proprietary Certificates

Let CA;, (resp. CAy) be the distinct certification authorities issuing the cer-
tificates for the proprietary (resp. collateral) services. Let Cy, (resp. C3) be the
proprietary (resp. collateral) certificates of some user. Assume that Cy,C> are
publicly available. We now review the desirable properties of the system; for
more details see [8].

— Non-transferability. Any user who learns secret key of C; would be able to
compute the secret key of Cs, thus, reducing the likelihood of transferring
proprietary certificates.



— Cryptosystem agility. Proprietary and collateral services can use different
cryptosystems. For example, the secret key of C; can be RSA type and the
secret key of Cs can be discrete-log based key.

— Locality: C'A; does not need to interact with C'As directly. However, the
“light” version of interaction such as broadcast of information by C A, is
necessary. See the discussion below.

— Efficiency: The certificate C; should not be substantially larger than a reg-
ular certificate of its type without proprietary properties.

— Security. Any party does not learn any information about the secret key of
Cs. No party besides C'A; learns what other certificates the user has. C'A;
learns only what public key and certificate the user uses to access collateral
service.

The paper [8] shows how to extend the regular certificate to make it propri-
etary one, namely being linked to the collateral certificate. As it was suggested
in [8], fair encryption can be used for the implementation of proprietary certifi-
cates. More precisely, the standard certification process of the public key of the
user is modified as follows:

In order to certify the public key pky, the certification authority C'A; (which
acts as a proprietary one) asks the user to present the certificate of the another
key pk, issued by C'A; which he uses for some other service (to be considered
as collateral) and the value F' = F&p, (sko) which is the fair encryption of
his collateral secret key sko under pk,. If CA; agrees to use this certificate as
collateral (if the potential loss of the collateral secret key would prevent the
user from sharing his proprietary secret key), she then verifies validity of the
collateral certificate by checking the signature of C'As and validity of the fair
encryption. The properties of fair encryption ensure that C'A; does not learn
any information about the user’s collateral secret key while being able to verify
whether this ciphertext is valid. C'A; also needs to be sure that pk, is still a
valid key. It is assumed that C'A, broadcasts the updates to the list of valid
public keys. Thus C' A; needs to check that pk, is still on that list. No direct
interaction between C'A; and C As is required. If verification is successful, then
C'A; includes F and the encryption of pk, under pk, in the certificate in addition
to standard information such as the user’s identity information and pk,. If the
user shares sk; with another party, then that party can decrypt F' and obtain
sko. It is shown in [8] that this approach allows us to achieve the properties
sketched above.

As we mentioned in the introduction, the weakness of the above approach
comes from the fact that accidental exposure of a proprietary secret key due to
theft or intrusion would immediately lead to a loss of the collateral key. Such
scenario is possible since the proprietary keys are supposedly less valuable than
collateral ones and, therefore, can be stored on less secure devices. Therefore,
direct use of proprietary certificates would be risky since it imposes additional
insecurity on the collateral secret key: no matter how well its storage is protected,
its security can be violated through exposure of the less secure proprietary key.



As a result of this problem it is unlikely that the proprietary certificates approach
be of wide practical use.

4 Making Proprietary Certificates Theft Protected

In this paper we discuss what steps can be taken towards making proprietary
certificates approach more practical. At the first glance, the problem of key
lending prevention and the problem of theft protection might seem contradictory.
Indeed, the former requires the entity with possession of the proprietary secret
key to be able to compute the collateral secret key while the latter would ask to
prevent this possibility. However, we show that a compromise is possible.

While our approach is based on the proprietary certificates solution of [8]
and preserves all the properties it achieves, our solution has one more additional
property, namely, theft protection. The theft-protection property is a modified
non-transferability property we discussed above. Namely, we require that in case
of involuntary proprietary key exposure the user has time to detect the fact of
theft and to contact proprietary and collateral service providers. During this
time delay no entity, even the one with knowledge of the proprietary secret key
should be able to derive the collateral secret key. After that delay (but not
before), however, the entity with possession of the proprietary secret key should
be able to obtain the collateral secret key as has been required before by the
non-transferability property.

As we discussed in the introduction, we assume that the users are able to
detect key theft within some period of time. The necessary time delay should
be determined depending on the factors such as how fast the user can detect
intrusion, contact service providers, etc.

We now provide our main solutions. We show how to implement the cer-
tification protocol run by a user and a proprietary CA in order to produce a
theft-protected proprietary certificate. We prove that the resulting certificates
meet the requirements of proprietary certificates and also have theft-protection
property. Namely, we first show that even possessing the proprietary secret key
no information about the collateral secret key can be obtained during some pre-
set time delay and secondly we show how the collateral secret key can be derived
after the delay.

The first of our solutions describes the implementation of CPU time delay,
which does not require additional participation of the CA. Our second solu-
tion presents the realization of real time delay. In this case, however, additional
involvement of the CA is required.

4.1 Implementing a CPU Delay

We use the idea of time-lock puzzles from [13], as outlined in Section 2.3, in order
to implement a CPU delay for the link between the proprietary and collateral
secret keys.



Let U denote the user that wants to certify the proprietary public key pk,
with the proprietary certification authority C'A;. We assume that &/ holds pro-
prietary and collateral public and secret key pairs (pk,, sk1), (pk,, sk2) and the
certificate on the collateral key C5 signed by C' A, that contains standard infor-
mation such as U’s identity info I Dy and the collateral public key pk,.

We let FE denote the fair encryption algorithm and S€ be some semantically-
secure symmetric encryption algorithm with some appropriately chosen key
length k. We may use a symmetric cipher such as AES with a 128-bit key in
CBC mode [5,1].

Let T be the desirable time delay in seconds, and let S be the approximate
number of squarings required to unlock the puzzle, where all squarings are per-
formed modulo some composite n, chosen by C' A;.

By combining time-locks and encryption under the proprietary public key,
we obtain the desired functionality.

Certification protocol. In order to produce a theft-protected proprietary certifi-
cate C on a public key pk;, the following interactive protocol is executed by U
and C'A;:

L. U computes F' = FE&p, (ska) (see Section 2.2 for details). He then sends
([DU,pkl,F, Cs) to CA;.

2. C'A; verifies I D7, Cy and whether F'is a valid fair encryption of the collateral
secret key (we refer to [8] for a description of these steps). If it is incorrect,
then C'A; aborts; otherwise she continues as follows:

(a) She picks two large random primes p, ¢ and computes n = pq.

(b) She picks a random k-bit string K and computes Er = SEx (F), where
k is large enough such that exhaustive search done in polynomial time
is not possible.

(c) She computes values a,b as a function of pk,. (We provide the details of
how a,b are computed below for RSA and DL keys). Wlog we assume
that n > a.

(d) She computes Ex = K + a* mod n, where t = T'S.

(e) Finally, she composes the certificate C; which contains (IDy, pk,, Er,
Ek,n,t,b) and a valid signature on this data and returns C; to U.

3. CA; sends ¢(n) to U securely (encrypted under pk, using any secure en-
cryption scheme).

We now specify how the values a, b above are computed.

Use of RSA keys. First, we will consider the case when i/ holds RSA-type pro-
prietary keys. Assume his proprietary public key is (N, e) and the corresponding
secret key is (IV,e), see Section 2.1 for details. Then C'A; picks some random
number a € Z3, and computes b = a® mod N.



Use of DL keys. Now, consider the case when I/ has discrete-log-type proprietary
keys. Suppose his proprietary public key is (p, g,q,9*) and his secret key is z,
refer to Section 2.1. Then C'A; picks some random r € Z; and computes b = g"
and a = y" = ¢"* mod p. If C'A; holds discrete-log-type keys as well, then we
can simplify this by making use of the CA’s keys. If C'A; has the public key
(9,4,9Y) and the corresponding secret y, she can put b = ¢g¥, which is a part of
CA’s public key and compute a = (¢*)¥ = ¢g*¥ mod p.

Claims. We now show that the above protocol has the desired properties. First
of all, note that due to the properties of the proof of correctness of fair encryption
the CA does not get any information about sks. Next note that since the CA
knows the factorization of n, she can compute a? efficiently, namely, she can
compute s = 2 mod ¢(n), Ex = K+a® mod n. Next, we claim that not knowing
sky it is not possible to compute any information about sk, due to semantic
security of FE. Hence, security property is satisfied.

Now suppose that some party P learned U’s proprietary secret key ski. In
any case the only way for P to compute sk is to decrypt Er in order to get
F' and to decrypt it using sk;. P cannot do exhaustive key search for K within
polynomial time because the key is long. Note that for any types of the U’s
keys P can compute a as a function of b and sk;. For the RSA-type keys P
computes a = b? mod n. For DL-type keys P computes a = b* mod p. As [13]
shows, the only way for P to decrypt EF is by computing a2 and then K. And
since P does not know the factorization of n, he can do so only by performing
sequential squarings which take time at least T'. After that P can decrypt Ep, F’
and obtain sko. P can also compute pk, and find the corresponding collateral
certificate Cs, since we assumed that all certificates are public. Thus, the theft-
protection property is preserved. It is easy to see that the protocol satisfies the
rest of the properties of theft-protected proprietary certificates.

U can verify that Er, Ex are composed correctly using ¢(n) as follows. He
computes s = 2t mod ¢(n), K = Ex — a® mod n, decrypts Er and compares
the result with F'.

It remains to mention that it is not possible to pre-compute the value of a
from b without the knowledge of the proprietary secret key.

4.2 Implementing a Real-Time Delay

Herein, we consider an approach in which a party has to interact with a CA in
order to complete the derivation of the collateral secret key.

Certification protocol. As with regular proprietary certificates, during the pro-
cess of certification of a public key, the user sends to the proprietary CA his
proprietary public key, some proof of identity, and the collateral certificate. In
addition, he sends a fair encryption F of the collateral secret key under the
proprietary public key, one component of which is a proof of correct contents.
As before, the proprietary CA verifies the validity of all information, including
the certificate associated with the collateral key, and the fair encryption. Now,



however, she does not include F' in the certificate, but rather stores it privately
along with user’s information in her database. We also assume that the CA and
users agree on the use of a secure (unforgeable under chosen-message attack)
signature scheme which uses keys of the same type as the one of the proprietary
keys.

Derivation of collateral secret. If some party P obtains the user U’s proprietary
secret key skj, he would contact the CA which in turn would send P the random
challenge value r. P computes a signature on r using sk; and sends it to the CA
along with a public key pk,, for which P knows the secret key.

The CA searches for pk, in her database and verifies the validity of the
signature. If it is correct, she waits the necessary time period and then returns
the fair encryption F of the collateral key (as collected above), encrypted under
pk,. We stress that the CA needs to send F' securely, or other parties could
obtain it, allowing them to derive the collateral key of party U immediately after
they obtain U’s proprietary key (thus, the delay would only hold for the first
request, in the worst case).

Upon receiving F', P (who knows sk;) can decrypt F' and obtain the collateral
secret key.

Claims. The above shows that the party P with knowledge of the proprietary
secret key can obtain the collateral secret key after the real time interval. It is
clear that P cannot do it prior to this time, as he does not know F' then. No
party which does not know the proprietary secret key cannot obtain F' since he
cannot forge a valid signature. Thus, the theft protection property is preserved.
It is easy to check that all the other properties are satisfied. We omit the details.

5 Alarm Techniques and Policies

Proprietary side alarms. It is clear that the trusted third party — the proprietary
CA in the protocol of Section 4.2 — may sound an alarm once she receives a
request, for a fair encryption. By the proposed structure, it is clear that he will
know what proprietary key has been compromised (in other words: the requests
are not blinded with respect to what account they correspond to). We argue that
it may not be in her best interests always to sound the alarm, though, as this
provides cheaters with a “rescue mechanism”. By making the alarm probabilistic,
we can maintain the deterrence against sharing, while still allowing warnings
to be generated when appropriate. We can use any policy, potentially made
dependent on the status of the account in question, to determine when to alert
users and collateral account holders.

Collateral side alarms. In the scenario in which the delay is governed by a CPU
intensive task there would not be anybody to sound such an alarm, given that
the party who is trying to retrieve the collateral key does not need to interact to
do so. Let us therefore also consider the use of alarms on the collateral accounts



as well as on the proprietary accounts. (These may be used for certificates with
real time delay as well as those with CPU delay).

A collateral-side alarm can be achieved by requiring two keys to access a
collateral account, one long and one short. Both have to be used to gain access
to an account. The long key would be the one we have referred to as the collateral
secret key. The short key, which may be as short as a few bits, does not have a
public counterpart (and so, a guess cannot be verified). We refer to the short key
as the secret string. This is not embedded in any certificates, whether proprietary
or collateral, but merely used as a “trip wire”. It is known by its owner, and
by the CA corresponding to the associated account. When a user attempts to
log in, he would not be given access permission of the collateral key is incorrect
(whether the collateral string is or not). If both are right, he is given access.
Otherwise, it is up to local policies whether to give access, and whether to sound
the alarm. These, and other actions, may be probabilistic, and may be governed
by arbitrary policies.

Acknowledgments

This work has greatly benefitted from discussions with Stanislav Jarecki. We
also wish to thank Ari Juels and Chanathip (Meaw) Namprempre for their help-
ful feedback. Alexandra Boldyreva was supported in part by SDSC Graduate
Student Diversity Fellowship, NSF Grant CCR-0098123 and NSF Grant ANR-
0129617.

References

1. M. BELLARE, A. DEsal, E. JokIPll AND P. RoGgAawAy, “A concrete security
treatment of symmetric encryption: Analysis of the DES modes of operation,”
Proceedings of the 38th Symposium on Foundations of Computer Science, IEEE,
1997.

2. JAN CAMENISCH, IVAN DAMGARD, “Verifiable Encryption, Group Encryption,
and Their Applications to Group Signatures and Signature Sharing Schemes,”
Advances in Cryptology — ASTACRYPT ’00, LNCS Vol. 1976, T. Okamoto ed.,
Springer-Verlag, 2000.

3. DARIO CATALANO, ROSARIO GENNARO, NICK HOWGRAVE-GRAHAM AND PHONG
Q. NGUYEN, “Paillier’s cryptosystem revisited,” ACM Conference on Computer
and Communications Security 2001.

4. R. CRAMER AND V. SHOUP, “A practical public key cryptosystem provably
secure against adaptive chosen ciphertext attack,” Advances in Cryptology —
Crypto 98, LNCS Vol. 1462, H. Krawczyk ed., Springer-Verlag, 1998.

5. “DES modes of operation,” National Institute of Standards and Technology, U.S.
Department of Commerce, 1980.

6. C. DWORK, J. LOTSPIECH AND M. NAOR, “Digital signets: Self-enforcing pro-
tection of digital information,” Proceedings of the 28th Annual Symposium on
Theory of Computing, ACM, 1996.

7. T. ELGAMAL, “A public key cryptosystem and signature scheme based on dis-
crete logarithms,” IEEE Transactions on Information Theory, vol 31, 1985.



8.

10.

11.

12.

13.

14.

15.

M. JAKOBSSON, A. JUELS AND P. NGUYEN, “Proprietary Certificates,” Pro-
ceedings of the The Cryptographers’ Track at the RSA Conference 2002, LNCS
Vol. 2271, Springer-Verlag, 2002.

M. JusT AND P. vAN OORsSCHOT, “Addressing the problem of undetected sig-
nature key compromise,” NDSS, 1999.

P. PAILLIER, “Public-key cryptosystems based on composite degree residuosity
classes,” Advances in Cryptology — Eurocrypt '99, LNCS Vol. 1592, J. Stern ed.,
Springer-Verlag, 1999.

“PKCS-1,” RSA LABS, http://www.rsasecurity.com/rsalabs/pkcs/pkcs-1/.
G. POUPARD AND J. STERN, “Fair encryption of RSA keys,” Advances in Cryp-
tology — Eurocrypt ‘00, LNCS Vol. 1807, B. Preneel ed., Springer-Verlag, 2000
R. RIVEST, A. SHAMIR AND D. WAGNER, “Time-lock puzzles and timed-release
crypto,” LCS technical memo MIT/LCS/TR-684, February 1996.

Craus P. SCHNORR, “Efficient signature generation by smart cards,” Journal of
Cryptology, 4:161-174, 1991.

S. STUBBLEBINE, P. SYVERSON AND D. GOLDSCHLAG, “Unlinkable serial trans-
actions: protocols and applications,” TISSEC 2(4): 354-389, 1999.



