
Fractal Merkle Tree Representation and

Traversal

Markus Jakobsson1, Tom Leighton2,3, Silvio Micali3, and Michael Szydlo1

1 RSA Laboratories, Bedford, MA 01730. {mjakobsson, mszydlo}@rsasecurity.com
2 MIT Laboratory for Computer Science, Cambridge, MA 02139

3 Akamai Technologies, Cambridge, MA 02142

Abstract. We introduce a technique for traversal of Merkle trees, and
propose an efficient algorithm that generates a sequence of leaves along
with their associated authentication paths. For one choice of parameters,
and a total of N leaves, our technique requires a worst-case computa-
tional effort of 2 log N/loglog N hash function evaluations per output,
and a total storage capacity of less than 1.5 log2 N/loglog N hash values.
This is a simultaneous improvement both in space and time complexity
over any previously published algorithm.

Keywords: amortization, authentication, fractal, Merkle tree

1 Introduction

A Merkle tree [8] is a tree where the value associated with a node is a
one-way function of the values of the node’s children. Merkle trees find
a wide range of applications within cryptography, due to their simplicity
and versatility. For many applications, one wishes to output a sequence
of consecutive leaves (or leaf pre-images), along with their “authentica-
tion paths” – the latter consists of the interior nodes that constitute the
siblings on the path from the leaf to the root. Given an authentication
path and a leaf, one can verify the correctness of the latter with respect
to the publicly known root value.

However, as elegant as Merkle trees are, they are used less than one
might expect. One reason is that known techniques for traversal of trees
require a relatively large amount of computation, storage, or both. Such
constraints make all but the smallest trees impractical, and in particular
not very useful for small and powerless devices [11].

Our Contribution. We propose a technique for traversal of Merkle trees
which is structurally very simple and allows for various tradeoffs between
storage and computation. For one choice of parameters, the total space

required is bounded by 1.5 log2 N/loglog N hash values, and the worst-
case computational effort is 2 log N/loglog N hash function evaluations
per output.

It should be noted that the use of our techniques is “transparent” to
a verifier, who will not need to know how a set of outputs were generated,
but only that they are correct. Therefore, our technique can be employed
in any construction for which the generation and output of consecutive
leaf pre-images and corresponding authentication paths is required.

Related Work and Applications. Our technique relates to and im-
proves on a previous result by Merkle [7], who proposed a technique
for Merkle tree traversal requiring a maximum of O(log2N) space and
O(log N) computation per output, where N is the number of leaves of the
tree, and one unit of computation corresponds to one hash function eval-
uation. (An alternative – but less efficient – method was independently
proposed by Vaudenay [15] some ten years later, where average instead of
worst-case costs were considered.) Our improvement is achieved by means
of a careful choice of what nodes to compute, retain, and discard at each
stage.

Our result also relates to recent methods for fractal traversal of hash
chains [3, 1, 14]. The most notable similarities involve the storage and
computation requirements and trade-offs, and the fractal scheduling pat-
tern. On the other hand, there are large intrinsic differences between what
needs to be computed. For a Merkle tree, the desired outputs are the con-
secutive authentication paths, while for a hash chain, the only output is
a single element. Moreover, while all elements of a hash chain are de-
termined by a single starting-value, the leaves of a Merkle tree may be
selected independently (via a keyed pseudo-random number generator).

The leaves of the tree may either be used one by one, or many at
the same time. The former type of use is well suited for applications
such as TESLA [10], certification refreshal [9], wireless security [2], and
micro-payments [4, 12], while the latter type finds direct use for Merkle
signatures [8, 5]. This partition of applications also corresponds to the
birth of the techniques we describe; while the second and third author
were motivated by the case relating to Merkle signatures, the first and
fourth author focused on the general case.

Outline. We begin by reviewing the goals and standard algorithms of
Merkle trees (section 2). We then introduce notation for our subtrees and
describe the intuition and tools for their use in our solution (section 3).
After that, we describe our technique on a more detailed level (section 4),

followed by a correctness and complexity analysis (section 5). A small
but technical improvement (section 6) yields our final result, followed by
conclusions and ideas for further work (section 7).

2 Merkle Trees and Background

Binary Trees. We first fix notation to describe binary trees. We say
that a complete binary tree T has height H if it has 2H leaves, and 2H −1
interior nodes. Each interior node has two children labeled “0” (left), and
“1” (right). With this naming convention the leaves are naturally ordered,
indexed according to the binary representation of the path from the root
to the leaf. Visually, the higher this leaf index in {0, 1, . . . 2H − 1} is, the
further to the right that leaf is. We define the altitude of any node n to be
the height of the maximal subtree of T for which it is the root. The node
heights range from 0 (leaves) to H (the root). As with the leaves, interior
nodes of a given height h0 may be assigned an index in {0, 1, . . . 2h0 − 1}.

Merkle trees. A Merkle tree is a binary tree with an assignment of a
string to each node: n �→ P (n) ∈ {0, 1}k , such that the parent’s node
values are one-way functions of the children’s node values.

P (nparent) = hash(P (nleft)||P (nright)) (1)

In the above and onwards, hash denotes the one-way function; a possible
choice of such a function is SHA-1 [13].

The value of a leaf, in turn, is a one-way function of some leaf pre-
image. For small trees these pre-images may be simply stored; alterna-
tively for larger trees, the leaves may be calculated with a keyed pseudo-
random generator. Either way, in this paper we model a leaf calculation
with an oracle LEAF-CALC, which is assumed to require computation
equal in quantity to that of hash. The value of the root is considered pub-
lic, while (to begin with) all the values associated with leaf pre-images
are known by the “tree owner” alone.

Desired output. We wish to generate a sequence of outputs, one for
each leaf. Each output has two components; (1) a leaf pre-image; and (2)
the authentication path of the leaf, i.e., the values of all nodes that are
siblings of nodes on the path between the leaf in question and the root.
This is illustrated in Figure 1. Visiting the leaves according to the natural
indexing, (from left to right), has the advantage that usually, leafi and
leafi+1 share a large portion of their authentication paths.

Fig. 1. The circle corresponds to the publicly known root value; the grey square to the
current leaf pre-image; and the white squares to the current path siblings. The set of
white squares make up the authentication path of the grey square.

In order to verify the value of a leaf pre-image, one computes (with
Equation 1) the potential values of its ancestors by iterated hashing. A
leaf pre-image is accepted as correct if and only if the computed root
value is equal to the already known root value.

Digital Signatures. Merkle trees were originally presented as a method
to convert a one-time signature scheme into a digital signature scheme [8]
by using a block of 2k leaf pre-images as a one time secret key. The result-
ing scheme needs only the key to the pseudo random number generator
as a secret key, and the root node value as the public key.

Computing nodes: TREEHASH. A well-known technique used with
Merkle trees is the use of an algorithm which computes the value P (n)
of a height H node, while only storing only up to H + 1 hash values.
We use several variants of this TREEHASH algorithm, and recall this
algorithm now to simplify the exposition of our traversal technique. Al-
gorithm TREEHASH computes the value of a node n, assuming access
to an oracle, LEAF-CALC, which returns the value of the leaf node with
index leaf ∈ {0, . . . 2H − 1}. The idea is to compute the leaves sequen-
tially, computing interior nodes whenever possible, and discarding nodes
which are no longer needed. The algorithm essentially just stores the node
values in a stack1, and repeatedly applies Equation 1.
1 The use of a stack to simplify the algorithm description was influenced by recent

work on time-stamping [6], which also relates to hash trees.

Algorithm 1: TREEHASH (maxheight)

1. Set leaf = 0 and create empty stack.
2. Consolidate If top 2 nodes on the stack are at the same height:
• Pop node value Pleft from stack.
• Pop node value Pright from stack.
• Compute Pparent = hash(Pleft||Pright).
• If height of Pparent = maxheight, output Pparent and stop.
• Push Pparent onto the stack.
3. New Leaf Otherwise:
• Compute Pleaf = LEAF-CALC(leaf).
• Increment leaf .
4. Loop to step 2.

Algorithm TREEHASH requires a total of 2maxheight − 1 computa-
tional units for a tree of height maxheight, assuming we count hash com-
putations and LEAF-CALC computations equally. Fortunately, due to
the fact that nodes are discarded when no longer needed, TREEHASH
only requires storage of maxheight + 1 hash values at any stage. This is
because at most one height may have two pebbles; the rest have at most
one each. This bound is important in situations where a larger algorithm
computes TREEHASH incrementally, applying some number of compu-
tational units to the iteration of steps 2 to 4 above, and modifying the
state of the algorithm’s stack. Such intermediate pebbles in the stack are
said to comprise the tail of the node calculation. For a node n at height
h0, we express this bound as

Space Tail(n) ≤ h0 + 1. (2)

We describe our uses and variants of TREEHASH as needed.

3 Subtree Notation and Intuition

The crux of our algorithm is the selection of which node values to compute
and retain at each step of the output algorithm. We describe this selection
by using a collection of subtrees of fixed height h. We begin with some
notation and then provide the intuition for the algorithm.

3.1 Notation

Starting with a Merkle tree T of height H, we introduce further notation
to deal with subtrees. First we choose a subtree height h < H. We let
the altitude of a node n in T be the length of the path from n to a leaf
of T (where, therefore, the altitude of a leaf of T is zero). Consider a

node n with altitude at least h. We define the h-subtree at n to be the
unique subtree in T which has n as its root and which has height h. For
simplicity in the suite, we assume h is a divisor of H, and let the ratio,
L = H/h, be the number of levels of subtrees. We say that an h-subtree
at n is “at level i” when it has altitude ih for some i ∈ {1, 2, . . . H}. For
each i, there are 2H−ih such h-subtrees at level i.

We say that a series of h-subtrees {Treei} (i = 1 . . . L) is a stacked
series of h-subtrees, if for all i < L the root of Treei is a leaf of Treei+1.
We illustrate our subtree notation and provide a visualization of a stacked
series of h-subtrees in Figure 2.

Fig. 2. (Left) The height of the Merkle tree is H , and thus, the number of leaves is
N = 2H . The height of each subtree is h. The altitude A(t1) and A(t2) of the subtrees
t1 and t2 is marked. (Right) Instead of storing all tree nodes, we store a smaller set
- those within the stacked subtrees. The leaf whose pre-image will be output next is
contained in the lowest-most subtree; the entire authentication path is contained in the
stacked set of subtrees.

3.2 Existing and Desired Subtrees

Pebbles. We say that we place a pebble on a node n of the tree T when
we store the value P (n) associated with this node.

Static view. As previously mentioned, we store some portion of the node
values, and update what values are stored over time. Specifically, during
any point of the output phase, there will exist a series of stacked existing
subtrees, as in Figure 2. There are always L such subtrees Existi for each
i ∈ {1, . . . L}, with pebbles on each of their nodes (except their roots).
By design, for any leaf in Exist1, the corresponding authentication path
is completely contained in the stacked set of existing subtrees.

Dynamic view. Apart from the above set of existing subtrees, which
contain the next required authentication path, we will have a set of desired
subtrees. If the root of the tree Existi has index a, according to the
ordering of the height-ih nodes, then Desirei is defined to be the h-subtree
with index a + 1 (provided that a < 2H−i∗h − 1). In case a = 2H−i∗h − 1,
then Existi is the last subtree at this level, and there is no corresponding
desired subtree. In particular, there is never a desired subtree at level
L. The left part of Figure 3 depicts the adjacent existing and desired
subtrees.

As the name suggests, we need to compute the pebbles in the desired
subtrees. This is accomplished by adapting an application of Algorithm 2
to the root of Desirei. For these purposes, the algorithm TREEHASH
is altered to save the pebbles needed for Desirei, rather than discarding
them, and secondly to terminate one round early, never actually comput-
ing the root. Using this variant of TREEHASH, we see that each desired
subtree being computed has a tail of saved intermediate pebbles as de-
scribed in Section 2. We depict this dynamic computation in the right
part of Figure 3, which shows partially completed subtrees and their as-
sociated tails.

Fig. 3. (Left) The grey subtrees correspond to the existing subtrees (as in figure 3.1)
while the white subtrees correspond to the desired subtrees. As the existing subtrees are
used up, the desired subtrees are gradually constructed. (Right) The figure shows the
set of desired subtrees from the previous figure, but with grey portions corresponding
to nodes that have been computed and dotted lines corresponding to pebbles in the
tail.

3.3 Algorithm Intuition

We now can present intuition for our main algorithm, and explain why
the existing subtrees Existi will always be available.

Overview. The goal of the traversal is to output the leaf pre-images
and authentication paths, sequentially. By design, the existing subtrees
should always contain the next authentication path to be output, while
the desired subtrees contain more and more completed pebbles with each
round, until the existing subtree expires.

When Existi is used in an output for the last time, we say that it
dies. At that time, the adjacent subtree, Desirei will need to have been
completed, i.e., have values assigned to all its nodes but its root (since
the latter node is already part of the parent tree.) The tree Existi is
then reincarnated as Desirei: First all the old pebbles of Existi are dis-
carded; then the pebbles of Desirei (and their associated values) taken
by Existi. (Once this occurs, the computation of the new and adjacent
subtree Desirei will be initiated.) This way, if one can ensure that the
pebbles on trees Desirei are always computed on time, one can see that
there will always be completed existing subtrees Existi.

Modifying TREEHASH. As mentioned above, our tool used to compute
the desired tree is a modified version of the classic TREEHASH in Section
2 applied to the root of Desirei. This version differs in that (1) it stops the
algorithm one round earlier (thereby skipping the root calculation), and
(2) every pebble of height greater than ih is saved into the tree Desirei.
For purposes of counting, we won’t consider such saved pebbles as part
of the tail “proper”.

Amortizing the computations. For a particular level i, we recall that
the computational cost for tree Desirei is 2 ∗ 2ih − 2, as we omit the
calculation of the root. At the same time, we know that Existi will serve
for 2ih output rounds. We amortize the computation of Desirei over this
period, by simply computing two iterations of TREEHASH each round.
In fact, Desirei will be ready before it is needed, exactly 1 round in
advance!

Thus, for each level, allocating 2 computational units ensures that the
desired trees are completed on time. The total computation per round is
thus 2(L − 1).

4 Solution and Algorithm Presentation

Three phases. We now describe more precisely the main algorithm.
There are three phases, the key generation phase; the output phase; and
the verification phase. During the key generation phase (which may be
performed offline by a relatively powerful computer), the root of the tree
is computed and output, taking the role of a public key. Additionally,
the iterative output phase needs some setup, namely the computation of
pebbles on the initial existing subtrees. These are stored on the computer
performing the output phase.

The output phase consists of a number of rounds. During round j, the
(previously unpublished) pre-image the j’th leaf is output, along with its
authentication path. In addition, some number of pebbles are discarded
and some number of pebbles are computed, in order to prepare for future
outputs.

The verification phase is identical to the traditional verification phase
for Merkle trees and has been described above. We remark again that
the outputs our algorithm generates will be indistinguishable from the
outputs generated by a traditional algorithm. Therefore, we do not detail
the verification phase, but merely the key generation phase and output
phase.

4.1 Key Generation

First, the pebbles of the left-most set of stacked existing subtrees are
computed and stored. Each associated pebble has a value, a position, and
a height. In addition, a list of desired subtrees is created, one for each
level i < L, each initialized with an empty stack for use in the modified
TREEHASH algorithm.

Recalling the indexing of the leaves, indexed by leaf ∈ {0, 1, . . . N −
1}, we initialize a counter Desirei.position to be 2ih, indicating which
Merkle tree leaf is to be computed next

Algorithm 2: Key-Gen and Setup

1. Initial Subtrees For each i ∈ {1, 2, . . . L}:
• Calculate all (non-root) pebbles in existing subtree at

level i.
• Create new empty desired subtree at each level i (except

for i = L), with leaf position initialized to 2ih.
2. Public Key Calculate and publish tree root.

4.2 Output and Update Phase

Each round of the execution phase consists of the following portions:
generating an output, death and reincarnation of existing subtrees, and
growing desired subtrees.

Generating an output. At round j, the output consists of the j’th
leaf pre-image, and the authentication path associated to this leaf. The
pebbles for this authentication path will be contained in the existing
subtrees, and only the pre-image needs to be computed during this round.

Death and reincarnation of existing subtrees. When the last au-
thentication path requiring pebbles from a given existing subtree has been
output, then the subtree is no longer useful, and we say that it “dies.”
By then, the corresponding desired subtree has been completed, and the
recently died existing subtree “reincarnates” as this completed desired
subtree. Notice that a new subtree at level i is needed once every 2ih

rounds, and so once per 2ih rounds the pebbles in the existing tree are
discarded. More technically, at round j, j = 0 (mod 2ih) the pebbles in
the old tree Existi are discarded; the completed tree Desirei becomes
the tree new Existi; and a new, empty desired subtree is created.

Growing desired subtrees. In this step we grow each desired sub-
tree that is not yet completed a little bit. More specifically, we apply
two computational units to the new or already started invocations of the
TREEHASH algorithm. Recall that the counter position corresponds to
the next leaf to be computed within the TREEHASH algorithm, (which is
presented starting with index leaf starting from 0). We concisely present
this algorithm as follows:

Algorithm 3: Stratified Merkle Tree Traversal
1. Set leaf = 0.
2. Output Authentication Path for leaf number leaf .
3. Next Subtree For each i for which Existi is no longer

needed, i.e, i ∈ {1, 2, . . . L} | leaf = 1(mod 2hi):
• Remove Pebbles in Existi.
• Rename tree Desirei as tree Existi.
• Create new, empty tree Desirei (if leaf + 2hi < 2H).
4. Grow Subtrees For each i ∈ {1, 2, . . . h}: Grow tree

Desirei by applying 2 units to modified TREEHASH (un-
less Desirei is completed).

5. Increment leaf and loop back to step 2 (while leaf < 2H).

5 Time and Space Analysis

Time. As presented above, our algorithm allocates 2 computational units
to each desired subtree. Here, a computational unit is defined to be either
a call to LEAF-CALC, or the computation of a hash value. Since there
are at most L−1 desired subtrees, the total computational cost per round
is

Tmax = 2(L − 1) < 2H/h. (3)

Space. The total amount of space required by our algorithm, or equiv-
alently, the number of available pebbles required, may be bounded by
simply counting the contributions from (1) the existing subtrees, (2) the
desired subtrees, and (3) the tails.

First, there are L existing subtrees and up to L − 1 desired subtrees,
and each of these contains up to 2h+1 − 2 pebbles, since we do not store
the roots. Additionally, by equation 2, the tail associated to a desired
subtree at level i > 1 contains at most h ∗ i + 1 pebbles. If we count only
the pebbles in the tail which do not belong to the desired subtree, then
this “proper” tail contains at most h(i − 1) + 1 pebbles. Adding these
contributions, we obtain the sum (2L− 1)(2h+1 − 2) + hΣL−2

i=1 i + 1 , and
thus the bound:

Spacemax ≤ (2L − 1)(2h+1 − 2) + L − 2 + h(L − 2)(L − 1)/2. (4)

A marginally worse bound is simpler to write:

Spacemax < 2L 2h+1 + H L/2. (5)

Trade-offs. The solution just analyzed presents us with a trade-off be-
tween time and space. In general, the larger the subtrees are, the faster
the algorithm will run, but the larger the space requirement will be. The
parameter affecting the space and time in this trade-off is h; in terms of
h the computational cost is below 2H/h, the space required is bounded
above by 2L 2h+1 + H L/2. Alternatively, and in terms of h, the space is
bounded above by 2H 2h+1/h + H2/2h.

Low Space Solution. If one is interested in parameters requiring little
space, there is an optimal h, due to the fact that for very small h, the num-
ber of tail pebbles increases significantly (when H2/2h becomes large).
An approximation of this value is h = logH. One could find the exact

value by differentiating the expression for the space: 2H 2h+1/h+H2/2h.
For this choice of h = log H = loglog N, we obtain

Tmax = 2 log N/loglog N. (6)

Spacemax ≤ 5/2 log2 N/loglog N. (7)

These results are interesting because they asymptotically improve
Merkle’s result with respect to both space and time. Merkle’s approach
required Tmax = 2 log N and Spacemaxapproximately1/2 log2 N .

We now return to our main algorithm, and explain how a small techni-
cal modification will improve the constants in the space bound, ultimately
yielding the result presented in the introduction.

6 Additional Savings

Although this modification does not affect the complexity class of either
the space or time costs, it is of practical interest as it nearly halves the
space bound in certain cases. It is presented after the main exposition
in order to retain the original simplicity, as this analysis is slightly more
technical. The modification is based on two observations: (1) There may
be pebbles in existing subtrees which are no longer useful, and (2) The
desired subtrees are always in a state of partial completion. In fact, we
have found that pebbles in the an existing subtree may be discarded nearly
as fast as pebbles are entered into the corresponding desired subtree. The
modifications are as follows:

1. Discard pebbles in the trees Existi as soon as they will never again
be required.

2. Omit the first application of 2 units to the modified TREEHASH
algorithm.

We note that with the second modification, the desired subtrees still com-
plete, just in time. With these small changes, for all levels i < L, the
number of pebbles contained in both Existi, and Desirei can be bounded
by the following expression.

SpaceExist(i) + SpaceDesire(i) ≤ 2ih+1 − 2 + (h − 2). (8)

This is nearly half of the previous bound of 2∗(2ih+1−2). We relegate the
technical proof of this bound to the appendix, but do remark here that
the quantity h − 2 measures the maximum number of pebbles contained

in Desirei exceeding the number of pebbles contained in Existi which
have been discarded. Using the estimate (8), we revise the space bound
computed in the previous section to be

Spacemax <= (L)(2h+1−2)+(L−1)(h−2)+L−2+h(L−2)(L−1)/2. (9)

We again round this up to obtain a simpler bound.

Spacemax < L 2h+1H L/2. (10)

Specializing to the choice h = loglog N , we improve the above result to

Spacemax ≤ 3/2 log2 N/loglog N. (11)

by reducing the constant from 5/2 to 3/2.

7 Future Work

While general hash functions allow for arbitrary input sizes, Merkle trees
use very particular input sizes. In particular, the one-way function we
need for interior nodes is two-to-one; and that used to compute leaf values
from their respective pre-images is one-to-one. If special-purpose functions
are developed for these purposes, this may improve the efficiency of the
resulting algorithm, most notably by avoiding the overhead associated
with the initial padding of short inputs, as is performed by standard
hash functions. Moreover, if these special-purpose functions are derived
from particular primitives, such as AES, it would be possible to prove the
security of the resulting Merkle-based scheme on the assumed hardness
of the primitive.

Acknowledgments

We wish to thank Ari Juels for providing helpful feedback towards making
the paper easier to read.

References

1. D. Coppersmith and M. Jakobsson, “Almost Optimal Hash Sequence Traversal,”
Financial Crypto ’02. Available at www.markus-jakobsson.com.

2. Y.-C. Hu, A. Perrig, and D.B. Johnson, “Packet Leashes: A Defense against
Wormhole Attacks in Wireless Ad Hoc Networks,” Proceedings of the Twenty-
Second Annual Joint Conference of the IEEE Computer and Communications
Societies (INFOCOM 2003), IEEE, San Francisco, CA, April 2003, to appear

3. M. Jakobsson, “Fractal Hash Sequence Representation and Traversal,” ISIT ’02,
p. 437. Available at www.markus-jakobsson.com.

4. C. Jutla and M. Yung, “PayTree: amortized-signature for flexible micropay-
ments,” 2nd USENIX Workshop on Electronic Commerce, pp. 213–221, 1996.

5. L. Lamport, “Constructing Digital Signatures from a One Way Function,” SRI
International Technical Report CSL-98 (October 1979).

6. H. Lipmaa, “On Optimal Hash Tree Traversal for Interval Time-Stamping,”
In Proceedings of Information Security Conference 2002, volume 2433 of Lec-
ture Notes in Computer Science, pp. 357–371. Available at www.tcs.hut.fi/ ˜
helger/papers/lip02a/

7. R. Merkle, “Secrecy, Authentication, and Public Key Systems,” UMI Research
Press, 1982. Also appears as a Stanford Ph.D. thesis in 1979.

8. R. Merkle, “A digital signature based on a conventional encryption function,”
Proceedings of Crypto ’87, pp. 369–378.

9. S. Micali, “Efficient Certificate Revocation,” Proceedings of RSA ’97, and U.S.
Patent No. 5,666,416.

10. A. Perrig, R. Canetti, D. Tygar, and D. Song, “The TESLA Broadcast Authenti-
cation Protocol,” Cryptobytes,, Volume 5, No. 2 (RSA Laboratories, Summer/Fall
2002), pp. 2–13. Available at www.rsasecurity.com/rsalabs/cryptobytes/

11. K. S. J. Pister, J. M. Kahn and B. E. Boser, “Smart Dust: Wire-
less Networks of Millimeter-Scale Sensor Nodes. Highlight Article in 1999
Electronics Research Laboratory Research Summary.”, 1999. Available at
robotics.eecs.berkeley.edu/ ˜ pister/SmartDust/

12. R. Rivest and A. Shamir, “PayWord and MicroMint–Two Simple Micropayment
Schemes,” CryptoBytes, volume 2, number 1 (RSA Laboratories, Spring 1996),
pp. 7–11. Available at www.rsasecurity.com/rsalabs/cryptobytes/

13. FIPS PUB 180-1, “Secure Hash Standard, SHA-1”. Available at
www.itl.nist.gov/fipspubs/fip180-1.htm

14. Y. Sella, “On the Computation-Storage Trade-offs of Hash Chain Traversal,” To
appear in Financial Crypto ’03.

15. S. Vaudenay, “One-time identification with low memory,” EUROCODE’92, CISM
Course and Lecture 339, pp. 217-228, Springer-Verlag 1993

A Proof of Space Bound

Here we prove assertion (6) which states for any level i the number of
pebbles in the Existi plus the number of pebbles in the Desirei is less
than 2∗2h − 2+ (h− 2). This basic observation reflects the fact that that
desired subtree can grow only slightly faster than the existing subtree
shrinks. Without loss of generality, in order to simplify the exposition, we
do not specify the subtree indices, and restrict our attention to the first
existing-desired subtree pair at a given level i.

Returned Pebbles. The first modification ensures that pebbles are
returned more continuously than previously, so we quantify this. Subtree
Existi, has 2h leaves, and as each leaf is no longer required, neither may be

some interior nodes above it. These leaves are finished at rounds 2(i−1)ha−
1 for a ∈ {1, . . . 2h}. We may determine the number of pebbles returned
at these times by observing that a leaf is returned every single round, a
pebble at height i h+ 1 every two rounds, one at height i h+ 2 every four
rounds, etc. We are interested in the number returned at all times up to
the time 2(i−1)ha − 1; this is the sum of the greatest integer functions:

A + [A/2] + [A/4] + [A/8] + . . . + [A/2h]

Writing a in binary notation a = a0 + 21a1 + 22a2 + . . . 2hah, this sum is
also

a0(21 − 1) + a1 ∗ (22 − 1) + a2 ∗ (23 − 1) + . . . ah(2h+1 − 1).

New Pebbles. The cost to calculate the corresponding pebbles in Desirei

may also be calculated with a similar expression. Using the fact that a
height h0 node needs 2h0+1 − 1 units to compute, we see that the desired
subtree requires

a0(2(i−1)h+1 − 1) + a1(2 ∗ 2(i−1)h+2 − 1) + . . . ah(2 ∗ 2ih+1 − 1)

computational units to place those same pebbles. This cost is equal to
2 ∗ 2i−1h ∗ a − z, where z denotes the number of nonzero digits in the
binary expansion of a.

Difference. At time 2(i−1) ha − 1, a total of 2 ∗ 2(i−1) ha − 2 units of
computation has been applied to Desirei, (factoring in our 1 round delay).
Noting that 2(i−1) h−1 more rounds may pass before Existi loses any more
pebbles, we see that the maximal number of pebbles during this interval
must be realized at the very end of this interval. At this point in time, the
desired subtree has computed exactly the pebbles that have been removed
from the existing tree, plus whatever additional pebbles it can compute
with its remaining 2∗2ih−2+z−2 computational units. The next pebble,
(a leaf) costs 2 ∗ 2ih − 1 which leaves z − 3 computational units. Even if
all of these units result in new pebbles, the total extra is still less than or
equal to 1 + z − 3. Since z ≤ h, this number of extra pebbles is bounded
by h − 2, as claimed, and Equation 8 is proved.

