A Practical Secure Physical Random Bit Generator

Markus Jakobsson*

Abstract

We suggest a practical and economical way to generate ran-
dom bits using a computer disk drive as a source of ran-
domness. It requires no additional hardware (given a sys-
tem with a disk), and no user involvement. As a concrete
example of performance, on a Sun Ultra-1 with a Seagate
Cheetah disk, it generates bits at a rate of either 5 bits per
minute or 577 bits per minute depending on the physical
phenomena that we use as a source of randomness. The
generated bits are random by a theoretical argument, and
also pass a severe battery of statistical tests.

1 Introduction

Randomness is a central aspect of cryptography. It is para-
mount for key generation, is necessary in several encryption
algorithms and in interactive proofs, and is useful for boost-
ing the efficiency of algorithms. It is the pillar on which
anonymity rests, and protocol soundness often requires a
source of random bits.

Consequently, randomness is a research topic that has
been given considerable attention. It has been proven that
if a one-way function exists, then, given a random seed, it is
possible to generate more randomness (a polynomial amount
in the length of the seed; see [14] for a good overview) [10,
11, 9]. A function that amplifies randomness in this manner
is called a pseudo-random generator. It is known that if the
underlying hardness assumption holds (i.e., that a particular
function cannot be inverted in polynomial time in the length
of its security parameter) then it is impossible to predict the
next bit to be output by the pseudo-random generator with
a probability non-negligibly better than 1/2.

However, this guarantee only holds if the seed is unknown
to the adversary, and so, we need randomness (in the form of
the short seed) in order to produce randomness. In commer-
cial cryptographic packages, this seed is oftentimes supplied
by the user. One approach (used in RSA’s toolkit) is to base

*Information Sciences Research Center, Bell Laboratories.
{markusj N shriver,bruce}@research.bell—labs .com
TRSA Laboratories, RSA Data Security. E-mail: ariersa.com

Elizabeth Shriver*

Bruce K. Hillyer* Ari Juels'

the seed on keyboard and mouse timings during a period of
several minutes during which the user “bangs the keyboard”
[19]. This supposedly produces a random seed, but is rather
inconvenient to the user. More automated methods have
been suggested to avoid this shortcoming. Such methods
are based on physical phenomena that in themselves have a
large portion of unpredictability. One such method uses the
time between observed emissions from a radioactive material
[8], another measures the frequency instability of an oscilla-
tor [6, 2], and additional techniques derive randomness from
quantum mechanical effects in semiconductor devices [1, 18].
Randomness has even been obtained from the blobs in a lava
lamp [4]. These techniques require the introduction of new
devices (e.g., radioactive material or noisy transistors, and
the measuring devices to observe these). This introduces
new costs, and also a new potential weakness: the output
will not be random if the source or measuring device stops
working as it is meant to. A number of random number gen-
erators are based on computer clocks (e.g., Truerand [13]),
but these generators do not have guarantees. Another po-
tential source of randomness is the unpredictable behavior of
the stock market. Although this source avoids the introduc-
tion of auxiliary devices and is well-studied, it has several
significant weaknesses: the market is sometimes predictable
(e.g., during a crash); the market can be manipulated (by a
large stock transaction, or by spreading rumors); and finally,
its behavior is never secret.

A desirable solution would combine the positive aspects
of all the above solutions while avoiding their shortcomings.
We want a local source of randomness that does not require
user involvement, and is not predictable or manipulable. To
limit the costs and to avoid new vulnerabilities, the method
for obtaining the random bits should not require any new
equipment or any modifications to a computer’s operating
system. We also want it to be obvious to the user whether
the generator is functioning correctly. Additionally, we want
to base our random bit generator on a well-studied physical
phenomenon, so that we can establish an assurance of the
level of randomness of our source. A final important aspect
is that of bandwidth—the rate at which bits are produced.

‘We propose a general method to derive randomness from
measurements of access times of storage devices such as tape
drives, CD-ROMs, and disk drives, as well as timings of
other computer phenomena that exhibit a known degree of
unpredictability. We focus on timings of magnetic hard disks
for the rest of this paper. We describe how to use variations
in disk drive response times as a source of randomness. This
source appears to have all of the advantages discussed above,
and need not suffer any of the disadvantages. Disks are lo-

cally available—already part of most systems. It is obvious
to the user whether the disk drive is operational or not.
Moreover, the I/O response time has been studied exten-
sively [23, 24, 7).

A way to derive random bits from measured variations in
the rotational latency of a disk is presented in [3], but that
approach modifies the kernel of the operating system to per-
form the measurements. Our approach applies to additional
devices, requires no operating system modifications, and is
accompanied by theoretical guarantees on the strength of
the generated bits.

Our solution consists of software that measures the re-
sponse time for certain I/O requests, and derives the ran-
dom bits from these measurements. Our algorithm deter-
mines an appropriate sequence of disk addresses to access,
measures the amount of available Shannon entropy, and cal-
culates how many measurements are needed per output bit
to meet a specified error rate given the available entropy.
Then the algorithm repeatedly measures the access times
for the determined disk addresses, and extracts random bits
from these measurements. One way to extract random bits
from the readings, which we describe in Section 3, uses the
method of randomness purification first proposed by Santha
and Vazirani [21], i.e., purifying randomness by the bitwise
exclusive-or of biased but random bits.

We consider two different modes of operation for our gen-
erator. The first mode, which we dub the “paranoid” mode,
generates bits having randomness that is ensured by varia-
tions in the speed of rotation of a disk drive. These varia-
tions are a consequence of chaotic air turbulence, therefore,
this source is guaranteed not to be predictable [3]. In Sec-
tion 3.1 we describe how to measure the amount of entropy
that we can safely attribute to rotational latency, and we
give our evidence that the entropy in this measurement is
indeed caused by the strongly random fluctuations in the
rotational latency.

We define the failure rate of our generator to be the max-
imum probability of success for an adversary who is trying
to guess the next output bit. Given the measured value of
strongly random entropy, we show how to derive the number
of readings required to produce each output bit, in order to
achieve a specified maximum failure rate guarantee. For our
specific computer configuration, our paranoid-mode gener-
ator will limit the adversary to a maximum probability of
278% in guessing a bit when we derive each output bit from
1494 readings. (This gives a bit-generation rate of approxi-
mately 5 bits per minute.)

The second mode of our generator, our “utility” mode,
derives randomness from the variance of disk access time
through all the hardware and software components in the
I/O path. Although many of these components are deter-
ministic from an epistemological standpoint, we believe that
the complexity of the components and their interactions ren-
ders them effectively non-deterministic. From a practical
standpoint, a completely accurate timing model of the sys-
tem is intractable. Utility mode obtains a higher rate of bit
production by assuming that all the calculated entropy in
the timing measurements is the result of noise that is effec-
tively unpredictable. To obtain a failure rate below 275 in
utility mode, calculated as per Section 3.1 for the parame-
ters of our hardware, our algorithm requires 13 readings per
output bit, and thus the output rate is about 577 bits per
minute. Standard statistical tests [15] are unable to distin-
guish the output of our utility mode from a truly random
sequence. But because much of the entropy used to produce
output bits in utility mode can not be attributed to inher-

ently unknowable sources, our utility bits are not known to
be cryptographically strong. Only in the paranoid mode do
we have a theoretical argument that the generated bits are
truly unpredictable.

The structure of this paper is as follows. In Section 2, we
present a very high-level description of magnetic disks, and
how these can be used as a source of randomness. In Sec-
tion 3, we present our algorithm for randomness extraction,
and in Section 4 we describe the statistical testing that indi-
cates that our utility bits “look random”, even though they
are not provably random. Finally, in Section 5, we present
conclusions and discuss future work. A brief review of the
technical fundamentals of disk I/O appears in Appendix A.

2 Magnetic disks as a random source

We use the variations in the response time of raw read
requests for one disk sector to a hard disk as the source
of randomness for our generator. (See Appendix A for a
brief overview of disk technology and I/O response times.)
For the quantitative results in this paper, we use a Sea-
gate Cheetah ST-34501W disk connected to a Sun Ultra-1
computer running Solaris 2.6. Our measurements use the
high-resolution timing capability that is generally available
in workstations and PCs. In Solaris, this is provided by the
gethrtime () library function, which has a 0.6 microsecond
resolution on our Ultra-1.

The performance of disk systems has been studied ex-
tensively. The methods currently used to predict disk per-
formance are analytic modeling [23] and simulation [24, 7].
Both methods are ultimately parameterized by measure-
ments obtained from real disks. Using either of these meth-
ods, the time needed to read a block from a local disk drive
is an event that currently cannot be predicted with great
accuracy. This is because of the complexity of the operating
system and of the I/O path. The best models have errors
of a few percent in predicting the mean response time, and
the response times are known to have a large variance, even
for repetitive measurements of the same pattern of reads
on the same computer and disk drive. (For example, the
performance model of [23] is only able to predict the mean
response time for disk requests that include a full rotational
latency, corresponding to the measurements in column 2 of
Table 1, to within a relative error of 3.4%.)

We believe, from the evidence given in [3], that the rota-
tion speed of a disk drive exhibits inherently unpredictable
fluctuations due to the mathematically chaotic properties
of turbulence in the air flow over the platters. In [3], the
amount of randomness is not quantified, so it is not clear
whether their method attempts to extract more random-
ness than is available. In addition, that paper lacks evi-
dence to substantiate the crucial but implicit assumption
that the fluctuating disk response time measurements are
caused by the strong randomness in the disk rotational la-
tency. Their assertion of random output may not hold if
the timing variations that they measure are caused by other
(not strongly-random) phenomena in the computer system,
such as interrupts, cache misses, and memory cycle stealing
by device controllers. Perhaps the variations in rotational
latency are entirely suppressed by clock-driven regularities
in the I/O path, and the timing variations consist entirely
of “noise” not known to be strongly random.?

‘We present experimental evidence in Section 2.2 that the
fluctuating speed of disk rotation produces a quantifiable

We are indebted to Carl Ellison for pointing out the importance
of emphasizing the evidence that bears on this causal link.

amount of randomness in the response time of a read re-
quest. Since we wish to incorporate this source of strong
randomness in our generator, we ensure that the read oper-
ations used for bit generation incur the latency of (nearly)
a full rotation of the disk.? To obtain this property, we
identify pairs of disk addresses (a and b) such that reading
a “initializes” the position of the disk head and platter in
such a way that if b is requested immediately after a request
for a completes, the response time for the read of b will in-
clude nearly a full rotation. We now discuss how to find
such (a,b) pairs.

2.1 Finding suitable disk addresses

We want the response time for each address to contain a
full rotation, so that the response time includes the entropy
derived from the rotational latency of the disk. We can find
addresses that incur full rotational latency as follows. Con-
sider the scenario in which we read a block from address a,
then seek the disk head to a different track on the disk, and
immediately request a read from address b on that track.
While the disk head is moving, the disk is rotating. When
the disk head arrives at the destination track, where is b rel-
ative to the disk head? In one extreme case, b is just rotating
under the disk head, so that it can be read immediately. In
this case, the response time will consist of overhead plus seek
time but no rotational latency. In the other extreme case,
b has rotated just past the disk head as the head arrives at
the destination track, causing the response time to consist
of overhead plus seek time plus a full rotational latency. So
given an address a, we search for a pair of addresses b and
b 4+ ¢ such that the response time for address b + ¢ is less
than the response time for b by about the time of one disk
rotation. To find such a b, we start with an initial value that
equals a plus twice the average capacity of a disk cylinder
(obtained from the disk manufacturer’s specification sheet?®).
We then perform a linear search in which we increment b by
moderate amounts (say, 20% of the size of a disk track as
obtained from the disk drive’s specification sheet), observ-
ing a monotonic increase in timings,? until we encounter a
pair b’ and b” such that the time for b” is less than the time
for b’ by a large fraction of the rotational latency time (also
obtained from the drive’s specification sheet). The pair of
destinations b’ and b" bracket the desired b that maximizes
the rotational latency. We find that b by binary search.

In practice, if our generator were to use only a pair of
addresses a and b, our generator would spend half of its time
on “initialization” by requesting a.® To reduce the overhead,
we use a sequence of addresses, not just a pair of addresses.
This sequence is determined one step at a time, as above,
so the first address initializes the position of the disk head
and platters, and each subsequent address incurs nearly a
full rotational latency when the requests are issued one at
a time in rapid succession. We denote the list of requested

2This maximizes the amount of strongly unpredictable rotational
latency incorporated in each reading.

3Most of the disk vendors have detailed web pages that publish
values of disk parameters such as the average number of bytes per
cylinder and the rotations per minute.

A timing that is inconsistent with the expected smooth increase
is re-measured in case it reflects a delay from other system activity.
If repeated measurements continue to show an unreasonable value,
perhaps because of a remapped bad block, we discard that address
and resume the search using a different nearby address.

5Section 3.1 reveals that it also is necessary to choose the number
of addresses to be larger than the number of disk cache segments
so that the disk mechanism is forced to perform a mechanical read
operation for every request.

addresses by r1,...,r,. We take high-resolution time mea-
surements immediately before issuing each read request and
immediately after that request is completed. The difference
is the timing that we use as a source of randomness. So,
from a list of addresses r1,...,7r, we obtain a list of tim-
ings. We iterate the timing run repeatedly (typically 100
iterations), and thereby obtain 100 timings for each address
Tr2y...,Tn.

2.2 Entropy in response time

If we are to use the response time of disk reads to generate
random bits, we must have confidence that the response
times have a random component. In this section we first
describe how to quantify the amount of randomness that is
available for extraction from timing measurements collected
as per the description in the previous section. Then we
develop a sequence of arguments and experimental results
that forge a causal link from the strongly-random “chaotic
air turbulence” described by [3] to the variations in timing
measurements actually obtained by our procedures.

We can quantify the amount of randomness by calculat-
ing a (lower-bound) estimate of the entropy of the source.
We use different computations to ascertain the available en-
tropy for paranoid and utility modes, but both methods use
the standard definition of entropy:

E=— Z f(k)log, f(k) (1)

k

where f(k) represents the frequency of a value k.

When we take 100 high-resolution timings for an address
r;, we obtain a list of 100 values,; all close to the mean,
but differing in the low-order bits (the microseconds and
nanoseconds). In practice, this list of readings almost never
contains duplicate values. Blindly applying equation 1 to
a list of » unique values yields E = log,n; a function of
the number of readings, independent of the behavior of the
disk. This is not what we want. We need a way to round
the timings to eliminate nanosecond jitter while retaining
meaningful fluctuations in the disk latency. As we vary the
quantization of rounding, the value of entropy ranges from 0
(all items rounded into the same bucket) to log, n (n unique
values). We use the following technique to determine an
intermediate quantization for rounding that gives a useful
value of entropy.

Recall that in picking our a,b pairs, we find pairs of des-
tinations b and b+ ¢ such that the timings for the b contain
a full rotational latency, whereas the timings for the b + ¢
do not. Given a quantization, we can calculate the entropy
for the timings of b and also for the timings of b + §. The
difference of these entropies is a function of the quantiza-
tion. Intuitively, if all the timings fall into one bucket only
(which is a very drastic rounding-off), there is only one out-
come of the experiment, and the entropy of the experiment
is zero, hence the difference of the entropies is zero. Simi-
larly, if the rounding is so mild that each timing is assigned
to a distinct bucket, the entropy of the experiment is log, n
(because of n unique values), so the difference between the
entropies of the two experiments is again zero. However,
choosing an intermediate bucket size gives a positive dif-
ference of entropies. We search for the quantization that
maximizes the difference in entropy for the b and b + J, be-
cause this quantization erases the confounding effects of the
timing mechanism, while revealing the entropy that results
from the difference between no rotational latency and full
rotational latency.

Table 1: Mean response time and computed entropy of read
times.

destination mean total rotational
address response time | entropy | latency entropy
802816 7.50 ms 3.17 0.16
808448 2.15 ms 3.01 -
1080329 7.61 ms 3.08 0.11
1081344 1.76 ms 2.97 -
105387008 9.50 ms 3.17 0.13
105401344 4.43 ms 3.04 -
1048622592 12.95 ms 3.13 0.13
1048623104 7.16 ms 3.00 -
1050628096 12.99 ms 3.10 0.10
1050628608 7.03 ms 3.00 -

Table 1 shows five pairs of b and b+ 6.5 Column 3 shows
the entropy for each b and b+ §, computed using equation 1
on timings rounded as above. Column 4 shows the differ-
ence. We attribute the difference between these entropies
to rotational latency, and we offer the following arguments
in support of the claim that this difference in entropy is a
consequence of rotational latency, and not a result of other
activity in the computer system.

First, we observe that the entropy values are consistently
higher for b than for b+ (i.e., destinations that incorporate
nearly a full rotation have higher entropy than destinations
that have minimal rotational latency). We observed this in
numerous measurements; five examples appear in Table 1.
In our system, the destinations that include a full rotational
latency have an average of 0.13 greater entropy.

The response time for b, which contains a full rotational
latency, is larger than the response time for b+ 4, which has
no rotational latency. One could hypothesize that the larger
response time for b leads to higher entropy because of noise
from events such as processor interrupts and other system
activity not known to be strongly random. But the evidence
does not support that hypothesis: our second observation is
that the increased entropy is not increasing as a function of
seek distance or total response time. The examples in Ta-
ble 1 are typical of our measurements: in the five pairs of b
and b + §, the response times for b vary by nearly a factor
of 2, and by a factor of 4 for the b+ §, yet the absolute en-
tropy values and the differences in entropy change little. In
particular, observe in Table 1 the four measurements that
have total response times near 7 milliseconds. Two of these
measurements have short seeks and nearly a full rotational
latency, and the other two measurements have long seeks
with almost no rotational latency. All four of these mea-
surements have the same behavior from the point of view of
the computer: a request is sent to the disk, and after a 7
millisecond delay, the disk responds with one sector of data.
These I/Os all have the same opportunity for the computer
system to introduce noise into the calculation of entropy,
but the requests that incur a full rotational latency consis-
tently have the higher value of entropy. This observation
holds true over many other b, b + § pairs.

We believe that the experiments described above give
good evidence for a causal link from variations in rotational
latency to variations in the response time of read requests.
We now describe an additional experiment that provides fur-

5The value of a = 524288 was used for this experiment, and each
measurement was repeated 100 times. The “bucket size” of 3.8856
milliseconds was used to compute the entropy.

ther evidence of this causal link. We correlate the speed of
disk rotation during a read request with the response time
of the disk request, in the following way. We connect a high-
speed measuring instrument (a logic analyzer) to the “index
pulse” test point on the disk drive’s circuit board. A volt-
age appears on that test point each time the disk platters
reach angular position zero. By measuring the time interval
between adjacent index pulses, we can directly observe the
speed of disk rotation. We find that when the disk is idle,
the speed of disk rotation is constant, with about 5.980 mil-
liseconds between index pulses. When the disk is servicing
requests, we observe fluctuations in the time between index
pulses. We conclude that disk arm movement disturbs the
smooth airflow inside the disk drive, inducing the chaotic
turbulence described by [3]. When the disk arm becomes
idle, the intervals usually oscillate above and below the value
of 5.980 on successive rotations, until the drive can dampen
out the speed fluctuations and return to its resting rate. A
complicating factor is that when the disk is very busy, some
index pulses are not generated—we observe times between
index pulses of about 12 or 18 or 24 milliseconds.

The experiment is as follows. We start the recording
of index pulse intervals on the logic analyzer. We then
cause the computer to issue a read at address a to initialize
the position of the disk head and platters, then to sleep 12
milliseconds” and then to issue a read at address b, which
is chosen to incur (almost) a full rotational latency and a
very short seek. Since we have measured the response time
of requests a and b, and we know the duration of the sleep
between them, we can calculate the number of disk rotations
(at the average rate) from the start of servicing a until the
start of servicing b. The next rotation occurs during the
servicing of b. We then examine the data collected from the
logic analyzer. We observe values of 5.980 (preceding a). We
say that the first disturbed index pulse timing corresponds
with the start of a, and from this we identify the measure-
ment m, that should be prior to and partially overlapping
the rotational latency of b, and the very next rotation ma,
during which the rotational latency of b completes. Note
that the request for a is an asynchronous event with respect
to the angular position of the disk: the application that
requests a and b is started manually.

Operating and extracting data from the logic analyzer is
manually intensive, so we have only been able to obtain 71
trials of the experiment. Given a list of 71 read response
times for b, a list of the corresponding m; measurements,
and a list of the corresponding mo measurements, we cal-
culated correlation coefficients. Because of the small num-
ber of trials, the results are only suggestive, but the results
are consistent with our claim of a causal link between the
rotational latency and the response time of a disk read. In
particular, the correlation coefficient between b and m; is ap-
proximately —0.24, and the correlation coefficient between b
and my is approximately 0.27. The change of sign between
adjacent disk rotations is consistent with our observation
that the disk usually oscillates between “too fast” and “too
slow” on successive rotations as the disk controller attempts
to drive the speed of rotation to the nominal value.

7"Some experiments used a sleep of 18 ms. This delay of 2 or 3 ro-
tation times enables the disk to stabilize to some extent, reducing the
number of missed index pulses. Sometimes, because of other system
activity, the operating system takes longer than the requested 12 or
18 milliseconds to reawaken our process. We discard all experimental
trials that encounter such delays.

3 Algorithm

This section describes the technique that we use to extract
random bits from the measurements of disk access times.
The only difference between the paranoid mode and the
utility mode is the number of readings that are required
to produce one output bit.

Not all of the total measured entropy is guaranteed to
correspond to actual unpredictable bits: what looks random
to us may not look random to a skilled adversary. This is the
reason that, in the paranoid mode, we determine the number
of readings per output bit using only the entropy attributed
to rotational latency. Because this entropy is a consequence
of chaotic air turbulence, the output bits in paranoid mode
are a prior: unpredictable by a strong adversary.

In utility mode, we bound the amount of randomness
available for extraction by the full entropy of the response
time of request b, although the actual algorithm in Section
3.1 uses a direct derivation of bias from the measurements.
For utility mode we could, instead, derive randomness from
the response time of a faster operation, such as a cache hit
in the disk controller, or the response to a TEST UNIT READY
command. This would produce bits at a faster rate (pre-
liminary tests suggest 2100 bits per minute), but we would
not be able to attribute any of the entropy to an inherently
unpredictable source such as chaotic variation in rotational
latency.

Our technique has 3 major steps. The calibration step
measures properties of the particular computer and disk
drive that will serve as a source of randomness, to select
a set of disk addresses to use as targets of read commands,
and to calculate a safe bound on the available entropy. The
query step performs a large number of read operations, to
obtain the response times from which the random bits will
be derived. The filter step applies a function to transform
the sequence of response times into a sequence of random
bits. We now describe each of these steps in detail.

3.1 Calibration

The calibration of the computer and disk system has 3 stages.
First, we determine a good sequence of disk addresses to use
for timing measurements. Then we calculate the amount of
entropy per disk timing that we can safely extract, and fi-
nally we derive how we will group raw response times during
the filter stage to make good use of the available entropy.

Determining the sequence of disk addresses. Our genera-
tor measures the response times for single-sector reads from
a sequence ri,...,r, of disk addresses. To force the disk
mechanism to perform a physical read from the disk surface
for each request, the value of n must be at least 2, and must
be larger than the number of sequential streams that can be
held in the disk drive’s cache (i.e., larger than the number
of cache segments). It is easy to determine the number of
cache segments experimentally [25], or (in many cases) by
reading the disk manufacturer’s specification sheet. Some
disks support a command that sets the maximum number
of cache segments, in which case we set it to 1.

We want the response time for each address to contain a
full rotation, so that the response time includes the entropy
derived from the rotational latency of the disk. We find
addresses that incur full rotational latency using the method
discussed in Section 2.1.

We choose an arbitrary address r; as a starting point,
and using this as a, search for a good b relative to a, i.e., a

value b incurring a large rotational latency. This b is ro. We
iterate this process to find a good r; relative to each r;_1.

Calculating the available entropy. We discussed how to cal-
culate entropy in Section 2.2. In summary, for paranoid
mode we measure the response times of single-sector disk
reads from a sequence of addresses ri,...,r,. We denote
these response times t1,...,t,—1, where ¢; is the response
time for a read to address r;y; immediately after a read to
address r;. We round the ¢;’s to obtain ¢;’s, and calculate the
entropies E,; from these ¢;. In paranoid mode we only use
the entropy attributable to rotational latency. This value is
obtained by finding the entropies E,, s, where r; + 4 is the
destination near r; that had no rotational latency, and then
by setting the available entropy E; = E,; — Ey,4+s5. (Typ-
ical values of E; for our hardware configuration appear in
column 4 of Table 1.)

In the utility mode, we use a value of entropy that may
be greater than the entropy of the rotational latency used
in paranoid mode, but that is definitely less than the full
measured entropy, E,;. (Column 3 of Table 1 gives typical
values of the full measured entropy on our hardware.) The
particular value of entropy that we use for utility mode is a
consequence of the grouping determined in the next section.

Now that we have determined the amount of entropy
available for extraction, we describe how to calculate the
number of readings that will be required to generate each
output bit. First we discuss paranoid mode, then utility
mode.

Determining grouping. Given the lower bound on entropy
attributable to rotational latency, the final calibration step
determines k, the number of readings required to compute
one output bit.

The entropy of a bit is calculated as

E = —plogyp— (1—p)log,(1—p) (2)

where p is the probability of the bit being 0. If a bit contains
less than one bit of entropy, this corresponds to a bias: one of
the outcomes is more likely. We first compute the bit prob-
abilities that correspond with the measured entropies, (e.g.,
the entropies illustrated in Table 1). We then determine how
many of these biased bits need to be exclusive-ored together
to drive the bias of the resulting bit below any specified
threshold, by extending the technique introduced by Santha
and Vazirani [21].

Consider two readings, each consisting of a single bit that
takes the value zero with probabilities p1 = 1/2 + €; and
p2 = 1/2 + €9, respectively. (More generally, p; = 1/2 +¢€;.)
The result is zero with probability pips + (1 —p1)(1 —p2) =
1/2 + 2e1€2. Generalizing this result, we can compute the
bias after exclusive-oring k such bits (for an even k) as

k—1
€ = 2

k
€;.

i=1

Since €¢; < 1/2 for all ¢, this expression goes to zero as k
increases. Given an entropy computed over a sequence of
1000 readings, we substitute € (the average value of ¢;) into
the previous expression, and get

€ = 2F ek (3)

To solve equation 3 for k with a maximum failure rate of

2780 we set € to 278°, rearrange terms, and take logs, get-
ting
—79
k= ——. (4)
1+ log, e

Let us consider an example of how to determine param-
eters in paranoid mode. For this example we choose n = 2
(i.e., we use a sequence of 2 addresses). Looking at Ta-
ble 1, we choose addresses r1 = 524288 and ro = 105387008
since this pair gives us a large rotational entropy. From the
4th column of Table 1, we see that E = 0.13. Using equa-
tion 2, we can approximate p as 0.982, hence e = 0.482 (since
€ = p—1/2). Substituting this value of € into equation 4, we
get k = 1494. This derivation shows that if 1494 readings
are “collapsed” to a single bit, and the entropy per reading is
0.13, then the output will have a bias that is upper-bounded
by 2739, Note that our method does not require any knowl-
edge of which specific bits in a reading are the ones that
contain the entropy attributable to rotational latency.

In the utility mode, we use entropy derived from ad-
ditional elements of the computer I/O architecture, and
thereby obtain significantly faster bit generation, although
these bits are not known to be strongly random. Our mea-
surements show a total entropy of approximately 3 bits of
entropy per reading (see the 3rd column in Table 1), but
this entropy is not concentrated in three particular bits of
the timing measurement. The entropy may be spread over
all the bits of the response time. Also, the bits in the timing
measurement are correlated to each other, and so cannot
be treated as independent readings. For utility mode, we
find it simplest to determine k directly from the the bias e,
as follows. First, we exclusive-or all the bits of a reading
to obtain a single bit reduced reading. Then we count the
number of 0 bits and 1 bits in the set of reduced readings
to determine the bit probabilities (p is the ratio of 0 bits to
total bits). This leads directly to k from equation 4 (since
p=1/2+¢€). We computed ¢ = 0.007 for 1000 readings us-
ing addresses similar to row 5 in Table 1. From equation 4
we get k = 12.83, which we round to 13. Using equation 2,
we see that this value of p corresponds with an entropy of
about 1, which is conservative by comparison with the 3 bits
of total entropy seen in the 3rd column of Table 1.

We note that the value k£ determined by the above tech-
nique guarantees the randomness of the output, assuming
that the value of entropy used here is less than the true en-
tropy of the source, since k puts an upper-bound on the bias
of the output bits. Implicitly, a proper choice of k therefore
corresponds to a proof that the output of the generator is
random, given a sufficiently good estimation of the entropy.

3.2 Query

After the three calibration steps are completed, we collect
the timings from which random bits will be generated. We
repeatedly issue the sequence {r;} of single-sector read re-
quests determined during calibration, to obtain correspond-
ing response times t;. Because the number of r; is greater
than the number of cache segments, the disk is forced to
serve all of the r; from the disk surface (after the first time
through the sequence of r;, which we discard).

3.3 Filter

We extract random bits from the timings t; by a filtering
function. One common way to do this is to compute a cryp-
tographic hash on a batch of input data (e.g., the timings

obtained in the query step), such that the aggregate entropy
of the input bits is large enough to imply the security of the
output bits.

In this paper, we use a simple and computationally ef-
ficient technique that has very strong theoretical underpin-
nings.® We group the t; into contiguous batches of size k,
and reduce each batch to a single bit by the exclusive-or of
all the bits in all the ¢; in the batch. k is the value calcu-
lated from the entropy during calibration, namely 1494 for
paranoid mode, and 13 in utility mode for our particular
hardware.

4 Validation

Physical analysis is one way to demonstrate the integrity,
i.e., the truly random nature, of a random source. Phys-
ical analysis of a random source involves modeling based
on knowledge of underlying physical properties. For exam-
ple, if a random number generator makes use of a radioac-
tive source, then results from experimental and theoretical
physics regarding radioactive decay offer evidence of the in-
tegrity of the generator. We presented a physical analysis
of magnetic disks in Section 2. The operational character-
istics of magnetic disks, as we have explained, are evidence
in support of the integrity of this generator.

It is also possible to test a random source empirically.
Empirical testing involves the application of tests to an out-
put sequence S derived from the source, comparing the re-
sults of these tests to the results likely to be obtained from a
source that is truly random. Although statistical testing can
not prove that a source is random, it is prudent to validate
the output of a source that is asserted to be random ac-
cording to a physical argument. A necessary (not sufficient)
condition for a good random generator is that the output
“looks random” to a battery of empirical tests.

In this section we describe empirical techniques for test-
ing the randomness of bits, and present the results of a par-
ticular battery of tests applied to the output of our genera-
tor in utility mode (i.e., k = 13, and also in a weaker mode,
namely k = 2).

4.1 Statistical testing

Empirical randomness tests may be roughly divided into
three categories: traditional statistical tests, complexity-
based tests, and spectral tests. Traditional statistical tests
are simple, ad hoc tests of randomness, such as the well
known examples in [12]. In a traditional statistical test, a
collection of random variables z1, ..., z, is derived from the
sequence S such that the distribution of the {z;} is easily
computed for a truly random sequence. (For example, the
{z;} might be independent and identically distributed over
truly random sequences S.) These {z;} then form the basis
of a chi-square test. The Runs Test given by Knuth is a
well known example of a traditional statistical test. In one
version of this test, the lengths of monotonically increasing
sub-sequences of S are tabulated for evaluation by a chi-
squared test.

Complexity-based tests are statistical tests based on the-
oretical characterizations of the complexity of a random se-
quence. An example of such a test is the Universal Statis-
tical Test [17, 16], which is based on characterizations of
the per-bit entropy of a source. Complexity-based tests are

8In another paper, we describe a filtering function that asymptoti-
cally extracts all the entropy available in the input, and that has very
good performance in practice.

similar in structure to traditional statistical tests, but are
lengthy and complicated. Spectral tests involve analysis of
Fourier or Walsh transforms of the sequence S or on the au-
tocorrelation function of S. Spectral tests are generally not
applied as statistical tests, but are used to make qualitative
assessments of purportedly random sequences.

No single empirical test offers strong evidence, per se,
of the random nature of a source. Even linear congruential
generators, which for cryptographic purposes were broken
two decades ago, will pass most empirical statistical tests,
as well as a range of spectral tests [22]. Thus, effective test-
ing requires the use of a battery of empirical tests. Even
then, empirical testing can only be regarded as a kind of
sanity check: the fact that a random source passes a bat-
tery of empirical tests is evidence of its integrity, but not a
guarantee. To guarantee the strength of a random generator
requires techniques such as physical analysis, together with
evidence that the physical analysis describes phenomena ac-
tually measured by the practical implementation. A good
overview of empirical tests of randomness may be found in
[5].

For empirical testing of our random generator, we use a
software package called Diehard [15] that has been designed
for this purpose. Diehard includes a battery of about 200
instances of fifteen traditional statistical tests. Although so-
phisticated pseudo-random generators successfully pass the
test, the author of Diehard asserts in 1996 that, to the best
of his knowledge, no physical random source has ever passed
the full battery of Diehard tests.

4.2 The results

The standard input file to diehard contains 91,750,400 bits.
We generated a file of this size using our algorithm with
k = 2. (This gives weaker guarantees than our utility and
paranoid modes, but increases the rate of bit production
for testing.) These bits passed the full suite of Diehard
tests. We also generated utility-mode bits (k = 13) for
testing, but only generated 30,384,320 of these because of
time limitations. To test these bits with diehard, we over-
wrote these bits into the leading portion of the k = 2 file.
This hybrid file (30 million & = 13 bits and 62 million
k = 2 bits) also passed the full suite of diehard tests. See
http://www.bell-labs.com/~shriver/random for the re-
sults of the Diehard tests.) Bits produced by our generator
in utility and paranoid mode are generated by exactly the
same mechanism, except that paranoid mode exclusive-ors a
larger number of readings together. Since equation 3 shows
that increasing values of k lead to tighter bounds on bias in
the output, we expect that bits generated in paranoid mode
(k = 1494) would also pass the Diehard tests.

In generating our bits, we used n = 20 disk addresses.
The average reading time was 8 ms, which gives us 577 util-
ity bits per minute. We may be able to greatly increase
the generation rate for utility bits by using disk commands
that are faster than read. For instance, preliminary exper-
iments show that the SCSI disk command called TEST UNIT
READY can be used with our technique to generate about 2100
utility bits per minute. A similar improvement will not be
available in paranoid mode until a physical argument can
establish the strongly random nature of some fast disk com-
mand.

5 Conclusions

We have presented a practical method to generate strong
random bits. The randomness is derived from the entropy
present in measurements of the disk I/O response time in
a computer. Our method does not require any addition or
changes of hardware, or any modifications of the computer
operating system.

The generator has two modes. In one mode, random
bits are generated from a source with known chaotic be-
havior, and therefore these bits are known not to be pre-
dictable. In the second mode, bits are generated from a
source that may be partly deterministic from an epistemo-
logical point of view, but that, in practice, is acknowledged
to be predictable only to a limited degree. The first mode
is appropriate for the generation of secret keys, seeds for
pseudo-random generators, or wherever we require that the
bit string be perfectly random against the strongest possible
adversary. The second mode is appropriate for applications
that require random bits in the absence of a strong adver-
sary, for settings where the power of the adversary is known
not to be sufficient, or where the cost to attack the system
with a reasonable success probability greatly exceeds the
potential gain of a successful attack.

The contributions of this paper are as follows. We sug-
gest a practical and useful setting for random bit genera-
tion, requiring a minimum of changes and user involvement.
We specify design goals giving an inexpensive and practical
product that can easily be integrated into existing crypto-
graphic packages, and that uses only the hardware present
in a typical workstation or PC. We develop methods to de-
tect and measure the entropy of an inherently unpredictable
origin given a source with a much larger amount of total
entropy. In our case, the strong entropy is derived from
perturbations in the rotational speed of a disk drive caused
by air turbulence over the disk platters, and the remainder
comes from the variance in disk access time attributable to
other sources, such as the operating system, the I/O bus ac-
cess, and the disk controller. Furthermore, we devise meth-
ods to decide, given the amount of available entropy and
the required failure probability, how many measurements
are needed to ensure the strength of each random bit gener-
ated. We combine these techniques to produce a random bit
generator that achieves our previously stated design goals.
In particular, the strength of the generator is established
on theoretical grounds, and is confirmed by a well-known
battery of statistical tests.

Directions for future work include the evaluation of a
wide range of physical sources for available randomness;
adaptations of our methods to fit other devices; and the
specification of a strict adversarial model, followed by rigor-
ous proofs that our random generator satisfies the require-
ments, given a minimum of assumptions on the random
source, along with a careful analysis of random sources to
establish that the stated assumptions are valid. We are es-
pecially interested in finding phenomena that support higher
generation rates for strongly random bits via a larger prod-
uct of readings per second X strong entropy per reading.

The efficiency and security—two opposing goals—both
depend directly on the number of readings, k, that are used
to produce one output bit. With a smaller value of k, effi-
ciency increases, but below a certain threshold, security de-
creases (since output bits will become partially predictable
to a sufficiently knowledgeable adversary). We believe that
it is an important topic of future research to develop meth-
ods to determine the smallest value of k£ that produces the

desired level of security. Lacking such a method, we have
been forced to be very conservative in our determination of
k, thereby obtaining strong bits, but suffering a consequen-
tial impairment in the bit generation rate.

In our current calibration phase, we assume that all the
variance in rotational latency corresponds to true entropy.
Although we believe that this assumption models reality
well, it may not be entirely true. For instance, the disk
controller works to dampen out fluctuations in the speed of
rotation, driving the disk speed towards the target value. It
is possible that some of the acceleration applied by the disk
controller may potentially be perceived as random behavior
by our estimator of the value k. Developing a better under-
standing of the influence of such behavior on our estimate,
and being able to counter the same, will improve our security
guarantees. This may lead to a somewhat lower efficiency.

On the other hand, our estimation method gives a lower
bound of the entropy of the source (based on the above
assumption). This may be an unnecessarily crude lower
bound. Developing more precise methods for determining
the entropy due to rotational latency may enable lower choi-
ces of k to be made, leading to a more efficient random gen-
erator.

Finally, a better understanding of the distribution of the
raw readings obtained from our physical randomness source
may enable us to make significant efficiency improvements
while maintaining the desired level of security, by supporting
the design of more efficient methods for the extraction of
randomness.

Acknowledgments. We wish to thank Andreas Jakobsson
and Rafi Ostrovsky for inspiring discussions and useful feed-
back, Mario Suttora and Cliff Martin for helping set up the
logic analyzer, Andres Tellez for collecting logic analyzer
measurements, and Peter Fiandra of Seagate for technical
information such as the identification of the index pulse test
pin. Many thanks to Carl Ellison, the shepherd for this
paper at CCS5.

References

[1] AGNEw, G. B. Random sources for cryptographic
systems. In Advances in Cryptology — Eurocrypt 87,
D. Chaum and W. L. Price, Eds., Springer Verlag,
pp- 77-81. Published in Lecture Notes in Computer
Science v. 304, 1988.

O

AT&T. T7001 random number generator. Data Sheet.

(=)

Davis, D., TnakA, R., AND FENSTERMACHER, P.
Cryptographic randomness from air turbulence in disk
drives. In Advances in Cryptology — CRYPTO ’94
(Santa Barbara, CA), Springer Verlag, pp. 114-120.
Published in Lecture Notes in Computer Science v. 839.

[4] Computing random numbers. Light headed. The
Economist (31 May 1997), 74-75. See also
http://www.lavarand.sgi.com/.

[5] ERDMANN, E. D. Empirical tests of binary keystreams.
Master’s thesis, University of London, 1992.

[6] FAIRFIELD, R. C., MORTENSON, R. L., AND KoUL-
HART, K. B. An LSI random number generator (RNG).
In Advances in Cryptology — CRYPTO ’84 (Santa Bar-
bara, CA, 1984), pp. 203-230.

[7] GANGER, G. R. System-oriented evaluation of 1/0 sub-
system performance. PhD thesis, University of Michi-
gan, Ann Arbor, MI, June 1995.

[8] GupE, M. Concept for a high-performance random
number generator based on physical random phenom-
ena. Frequenz 39 (1985), 187-190.

[9] HAsTAD, J. Pseudo-random generators under uniform
assumptions. In Proceedings of the Twenty Second An-
nual ACM Symposium on Theory of Computing (Bal-
timore, MD, 14-16 May 1990), pp. 395-404.

[10] HAsTAD, J., IMPAGLIAZZO, R., LEVIN, L., AND LUBY,
M. Pseudo-random generation based on one-way func-
tions. To appear in STAM Journal of Computing. A
preliminary version appears in STOC, 1989.

[11] ImpAGLIAZZO, R., LEvVIN, L. A., AND LuBy, M.
Pseudo-random generation from one-way functions (ex-
tended abstract). In Proceedings of the Twenty First
Annual ACM Symposium on Theory of Computing
(Seattle, WA, 15-17 May 1989), pp. 12-24.

[12] KNuTH, D. The Art of Computer Programming,
Seminumerical Algorithms, second ed. Addison Wes-
ley, Reading, MA, 1981.

[13] Lacy, J. B., MITCHELL, D. P.; AND SCHELL, W. M.
Cryptolib: Cryptography in software. In USENIX Se-
curity Symposium IV Proceedings (Santa Clara, CA,
October 1993), USENIX Association, pp. 1-17. See also
ftp://research.att.com/dist/mab/librand.shar.

[14] LuBy, M. Pseudorandomness and Cryptographic Appli-
cations. Princeton University Press, New Jersey, 1996.

[15] MARSALGIA, G. Diehard. http://stat.fsu.edu/~geo/
diehard.html.

[16] MAURER, U. A universal statistical test for random bit gen-
erators. Journal of Cryptology (1992), 89-105.

[17] MAURER, U. M. A universal statistical test for random
bit generators. In Advances in Cryptology — CRYPTO ’90
(Santa Barbara, CA, 1990), Springer Verlag, pp. 409-420.
Published in Lecture Notes in Computer Science v. 537.

[18] RICHTER, M. Ein Rauschgenerator zur Gewinnung von
Quasi-idealen Zufallszahlen fiir die Stochastische Simula-
tion. PhD thesis, Aachen University of Technology, 1992.
In German.

[19] RSA DATA SECURITY, INC. RSA SecurPC for Windows 95
Users Manual, 1997.

[20] RUEMMLER, C., AND WILKES, J. An introduction to disk
drive modeling. IEEE Computer 27, 3 (March 1994), 17—
28.

[21] SANTHA, M., AND VAZzIRANI, U. V. Generating quasi-
random sequences from slightly-random sources (extended
abstract). In 25th Annual Symposium on Foundations of
Computer Science (Singer Island, FL, 24-26 Oct. 1984),
1IEEE, pp. 434-440.

[22] ScHNEIER, B. Applied Cryptography, second ed. John Wiley
& Sons, Inc., 1996.

[23] SHRIVER, E. Performance modeling for realistic storage de-
vices. PhD thesis, New York University, New York, NY, May
1997. Available at http://www.bell-labs.com/~shriver/.

[24] WiLKES, J. The Pantheon storage-system simulator. Tech.
Rep. HPL-SSP-95-14, Storage Systems Program, Hewlett-
Packard Laboratories, Palo Alto, CA, December 1995.

[25] WORTHINGTON, B. L., GANGER, G. R., PATT, Y. N., AND
WILKES, J. On-line extraction of scsi disk drive parame-
ters. In Proceedings of ACM SIGMETRICS Conference on
Measurement and Modeling of Computer Systems (Ottawa,
Canada, May 1995), ACM Press, pp. 146-56.

A Basic disk knowledge

See [23, 20] for additional disk information.

The access time for a read request to a local disk is the
sum of queuing delays and service times in many phys-
ical components, such as the host device controller, the
bus, the disk controller, and the disk mechanism. When a
disk request is issued, it enters the operating system, which
then hands it off to the host device controller. If the disk
is busy, the request is put on a queue in the device con-
troller; the queue is sorted by a scheduling algorithm that
attempts to improve response times. One commonly-used
class of scheduling algorithms are the elevator algorithms,
where the requests are serviced in the order that they ap-
pear on the disk tracks. Once the request reaches the head
of the queue, the request is sent to the bus controller which
requests the bus. The request is then sent to the disk,
and might be queued there if the disk mechanism is busy.
This queue is also sorted to improve response time; one
commonly-used scheduling algorithm is Shortest Position-
ing Time First, which services requests in an order intended
to minimize the sum of the seek time (i.e., the time to move
the head from the current track to the desired track) and the
rotational latency (i.e., the time needed for the disk to rotate
to the correct sector once the desired track is reached).

When the request reaches the head of the queue, the
disk cache is checked to see if the data is in cache. If not,
the disk mechanism moves the disk head to the desired track
(seeking) and waits until the desired sector is under the head
(rotational latency). The desired data is then read into the
disk cache. The disk controller then contends for access
to the bus, and transfers the data to the host from the disk
cache at a rate determined by the speed of the bus controller
and the bus itself. Once the host receives the data and copies
it into the memory space of the application, the application
process is awakened. At this time, is the read is said to be
completed.

The disk cache (also called the disk buffer) is used for
multiple purposes. One is as a pass-through speed-matching
buffer between the disk mechanism and the bus. Most disks
do not retain data in the cache after the data has been sent
to the host. A second purpose is as prefetching buffer. Data
can be prefetched into the disk cache to service future re-
quests. Most frequently, this is done by the disk saving in a
cache segment the data that comes after the requested data.
Modern disks such as the Seagate Cheetah only prefetch
data when the requested addresses suggest that a sequen-
tial access pattern is present. The disk cache is divided
into cache segments. Each segment contains data prefetched
from the disk for one sequential stream. The number of
cache segments usually can be set on a per-disk basis; the
typical range of allowable values is 1-16.

