
Efficient Constructions for One-way Hash Chains

Yih-Chun Hu1, Markus Jakobsson2, and Adrian Perrig3

1 UC Berkeley
2 Indiana University at Bloomington

3 Carnegie Mellon University

Abstract. One-way chains are an important cryptographic primitive
in many security applications. As one-way chains are very efficient to
verify, they recently became increasingly popular for designing security
protocols for resource-constrained mobile devices and sensor networks,
as their low-powered processors can compute a one-way function within
milliseconds, but would require tens of seconds or up to minutes to gen-
erate or verify a traditional digital signature [6]. Recent sensor network
security protocols thus extensively use one-way chains to design proto-
cols that scale down to resource-constrained sensors [21, 29]. Recently,
researchers also proposed a variety of improvements to one-way hash
chains to make storage and access more efficient [9, 18, 33], or to make
setup and verification more efficient [17, 21].
In this paper we present two new constructions for one-way hash chains,
which significantly improve the efficiency of one-way chains. Our first
construction, the Sandwich-chain, provides a smaller bandwidth over-
head for one-way chain values, and enables efficient verification of one-
way chain values if the trusted one-way chain value is far away. Our
second construction, Comb Skipchain, features a new lower bound for
one-way chains in terms of storage and traversal overhead. In fact previ-
ously, researchers [9] cite a lower bound of log2(n) for the product of per-
value traversal overhead and memory requirements for one-dimensional
chains. We show that one can achieve a lower bound by considering
multi-dimensional chains. In particular, our two-dimensional construc-
tion requires O(log(n)) memory and O(1) traversal overhead, thereby
improving on the one-dimensional bound. In addition, the setup cost
for the one-way chain is in contrast only O(n/ log(n)). Other benefits
for both constructions include a faster verification step than the tra-
ditional hash chains provide; a verifier can “catch up” efficiently, after
having missed some number of previously released hash values (for the
Sandwich-chain); and resistance against DoS attacks on authentication
values. Moreover, we describe fractal traversal schemes for our proposed
structures, bringing down the traversal costs for our structure to the
same as those of the simpler “traditional” hash chain.
Our new construction is orthogonal to most previously proposed tech-
niques, and can be used in conjunction with techniques for efficient setup
or verification of one-way chains.

Keywords: One-way hash chains, efficient constructions, broadcast au-
thentication.

2 Yih-Chun Hu et al.

1 Introduction

One-way chains are a widely deployed cryptographic primitive. Lamport first
proposed to use one-way chains for efficient authentication of one-time pass-
words [20], which Haller later refined to the S/KEY standard [13]. Since Lam-
port’s work, many researchers proposed to use one-way chains as a basic building
block for a variety of applications, for example for digital cash [2, 15, 27, 31], for
extending the lifetime of digital certificates [1, 25], for constructing one-time sig-
natures [10, 23, 24, 32], for authenticating link-state routing updates [8, 14, 34],
or for efficient packet authentication [28].

Despite the computational efficiency of one-way functions, one-way chains
are still challenging to use in resource-constrained environments, such as on
small mobile devices or sensor networks. Especially some of the proposed sensor
networks have significant resource limitations, as they use minimal hardware to
lower the energy consumption [19]. In these resource-challenged environments
the setup, traversal, verification, and storage of long one-way chains is a major
challenge.

Recently, researchers proposed a variety of improvements to one-way hash
chains to make setup, traversal, and storage more efficient. A good metric for
one-way chain efficiency is the product of the per-value traversal overhead and
the memory requirements.4 For example, simply storing each value of a one-way
chain with length n would result in a cost of O(n), as storage requires O(n) mem-
ory and traversal is O(1) (no computation necessary, the one-way chain values
are simply stored in an array). Another straightforward approach is to only store
the seed of the chain, and derive each value on the fly, with an O(n) efficiency
again, as storage costs are O(1) and traversal costs O(n). Jakobsson [18], Cop-
persmith and Jakobsson [9], and Sella [33] propose new techniques that make
traversal and storage more efficient, and apply these techniques to traditional
one-way chains. All of these techniques allow the computation of consecutive val-
ues in the hash chain at a cost of only O(log(n)) one-way function computations
(traversal cost), while also requiring O(log(n)) storage, resulting in an efficiency
of O(log2(n)). Given that the traversal techniques are applied to standard hash
chains, the verification cost is not affected by the manner in which the values
are represented and computed, making the verification cost O(n). This is also
the computational cost of the setup phase, in which the value at the endpoint is
computed given a randomly selected seed; this computation may be performed
by a powerful and trusted device, as opposed to the resource constrained device
that performs the traversal.

Hu et al. propose a new structure for one-way chains, in which more than
one level of chains are used [17]. The main benefit of their structure is that it
allows for more efficient verification: a verifier would only have to compute the

4 The traversal cost can be zero when the entire chain is stored, which would result
that the product would be zero as well. We could deal with this by also accounting
for memory accesses, or by adding 1 to the number of one-way function computations
for the traversal cost. Both techniques result in a non-zero positive traversal cost.

Lecture Notes in Computer Science 3

sequence of hash function evaluations corresponding to a small portion of the
total number of traversed values. We review their approach in Section 4 and
refine their construction to design a new one-way chain that only requires O(1)
traversal overhead and O(log(n)) storage. The resulting efficiency of O(log(n))
is significantly better than previous bounds.

Liu and Ning propose a two-level one-way chain, where the chains of the
second level are derived from values of the first level [21]. Their scheme provides
a linear speedup for setup and verification, and thus still requires O(n) setup,
storage, and verification overhead.

Our approach is to design a new structure that allows for both rapid gen-
eration and verification of intermediary nodes, and without the increase in rep-
resentation of approaches such as Merkle trees. Another interesting approach
was recently taken by Fischlin [11], in which he shows how to augment the out-
put from the hash chain traversal with a checksum in order to allow for faster
verification of standard hash chain elements. Therein, security can be traded
for efficiency by setting the appropriate parameter controlling the length of the
checksum component. In contrast, we do not have to give up on security in order
to achieve the increased efficiency of verification, but do have to augment the
underlying graph structure. It appears likely that the methods can be combined,
but we leave this as an open problem for future research

This paper makes the following contributions:

– Framework. We introduce a framework for comparing one-way chain tech-
niques, considering setup, traversal, verification, storage, and communication
overheads.

– New two-dimensional chains. We propose a new technique for authen-
ticating chains below the first level of the hierarchy, producing three clear
advantages in comparison to the related approach of [21]: First, it avoids
jamming-based DoS attacks that focus on disrupting the transmission of
the sensitive authentication values for secondary chains. Second, it allows
users to store and forward the new authentication values for the benefit of
other users, who did not receive them when first transmitted. This approach
does not require users to trust one another. Note that we obtain this benefit
without the use of digital signatures or other heavy-weight constructions;
in fact, our approach has the same low computational demands as the ap-
proach taken in [21]. Third and finally, it allows a user who has missed some
(potentially large) number of authentication values to “catch up” with a
computational effort that is a fraction of number of transmitted authentica-
tion values missed by the user. This feature, which is not present in other
proposals (whether those using traditional or hierarchical chains) may prove
particularly beneficial in settings where nodes are mobile.

– Light chains. We propose the notion of light one-way chains to lower the
communication overhead. These are relatively short hash chains whose values
are shorter than what is normally needed to avoid attacks based on inverting
or finding collisions; we show how to use these in a way that avoid attacks.
Using known hash indexing techniques, we further make our proposal resis-

4 Yih-Chun Hu et al.

tant against birthday attacks, that would otherwise reduce the security of
the structure as its number of elements grows.

More specifically, we present two new one-way chain constructions: Sandwich-
chain and Comb Skipchain. Sandwich-chain is a new hash chain structure with
a fractal traversal algorithm requiring only O(log(n)) computation and stor-
age; a reduction of the bandwidth requirements; and a substantially reduced
verification effort. The exact verification effort depends on parameter choices,
and will be described in detail. Comb Skipchain is a new hash chain featuring
only O(n/ log(n)) cost for setup, O(log(n)) storage, and O(1) cost for traversal.
This construction is substantially more efficient than the lower bound for one-
dimensional one-way chains. Like the new structures of [17, 21], our construction
is not compatible with all previous uses of hash chains. However, and as will
become evident, there are many common uses of traditional hash chains that
can easily be adapted to use our structure.

The outline of the paper is as follows. Section 2 presents one-way chain
basics and our evaluation framework. Section 3 introduces our Sandwich-chain,
and Section 4 presents our Comb Skipchain construction. We describe the use of
light chains in 5. Section 6 discusses different deployment scenarios and analyzes
which one-way chain technique is most appropriate.

2 Background and Evaluation Framework

We present a framework for evaluating and comparing one-way chain proposals,
comparing setup, traversal, verification, storage, and communication costs. Our
constructions, like those of [21], are based on a hierarchy of chains, where values
of some chains (which we refer to as primary chains) are used as roots for other
chains (so-called secondary chains.)

One-Way Chain Setup. A one-way chain (V0 . . . VN) is a collection of values such
that each value Vi (except the last value VN) is a one-way function of the next
value Vi+1. In particular, we have that Vi = H(Vi+1), for 0 ≤ i < N . Here, H
is a one-way function, and is often selected as a cryptographic hash function,
which is why the structure is often also called a hash chain. For setup of the
one-way chain, the generator chooses at random the root or seed of the chain,
i.e., the value VN , and derives all previous values Vi by iteratively applying the
hash function H as described above. The value V0, which we refer to as the
end-value, is normally made public, and potentially linked to the identity of the
user possessing the corresponding root value. An example of a standard hash
chain is shown in Figure 1.

PSfrag replacements

V0 V1 V2 V3 V4 V5

Fig. 1. Standard one-level one-way chain.

Lecture Notes in Computer Science 5

Verification of One-Way Chain Values. We assume that the verifier knows an
authentic value of the generator’s one-way chain, usually the end-value V0. To
verify an input value Vi of a chain, the verifier iteratively applies the one-way
function H i times and compares the result to the trusted value V0, i.e., verify
that H i(Vi) equals V0. If the computed and known values are equal, then the
input value is said to be authentic. Note that if another value Vk, for k < i, is
already known, then it suffices to iteratively apply the one-way function some
i−k times to the input value, and compare the result to this intermediate value.

One-way Chain Traversal. When the generator discloses successive values of
the one-way chain, we call this one-way chain traversal. In the introduction, we
mentioned two simple traversal techniques: in one the generator stores all values
of the one-way chain in memory, and in the other the generator recomputes
each value from the seed value. In so-called fractal traversal techniques the set
of values that is stored is modified over time in a manner that reduces the
(storage-times-computation) complexity.

One-way Chain Advantages and Disadvantages. Traditional one-way chains have
many advantages. First of all, given only a trusted value Vi of the chain, it is
intractable to find a value Vj , where j > i, such that Hj−i(Vj) = Vi (assuming
that H is a secure one-way function and that the output of H is sufficiently large,
we further discuss the security of one-way chains below). However, it is easy to
assess the validity of a value Vj , where j > i, by verifying that Hj−i(Vj) = Vi

(assuming that H provides weak collision resistance, also called second pre-image
collision resistance).

A drawback of traditional one-way chains is that the verifier has to perform
j − i operations to validate Vj given Vi, which can be expensive if j − i is large.
Finally, the repeated disclosure of one-way chain values carries a cost related
to the transmission of these values. The required bandwidth may be a burden
to senders, especially in highly resource-constrained environments, such as in
sensor networks.

Hierarchical One-Way Chains. A hierarchical one-way chain consists of two or
more levels of chains, where values of a first-level (“primary”) chain act as roots
of a set of second-level (“secondary”) chains. We refer to the secondary chain
rooted in the ith value of the primary chain as the ith secondary chain. Here,
all the values of the ith secondary chain are released before any of the values of
the i + 1st chain is released; the primary chain value Vi is released in between.
Figure 2 shows an example of such a structure.

As will be described later, different one-way functions may be used for pri-
mary and secondary chains, with the aim of lowering the communication costs.

To set up the hierarchical chain, the generator picks VN at random and com-
putes the primary chain VN−1, . . . , V0. The generator computes the secondary
chain on the fly. A clear advantage is the very efficient setup, as only N/K
operations are needed to compute V0, where K is the length of the secondary
chain.

6 Yih-Chun Hu et al.

PSfrag replacements

V0 V1 V2 V3 VN−1 VN

v10

v11

v12

v20

v21

v22

vN0

vN1

vN2

Fig. 2. Hierarchical one-way chain, where VN . . . V0 are values on the one-way primary
chain, and the values vi0 . . . vi2 are values of a secondary light chain. There is no
subchain under V0 since it serves as the verification value.

To use this one-way chain, the generator traverses all the secondary chains
in sequence (e.g., v00, v01, v02, v20, . . . , vN0, vN1, vN2) and discloses the values of
the primary one-way chain when possible.

A disadvantage of the hierarchical chain is the authentication of end-values of
secondary chain. This hierarchical chain was proposed by Liu and Ning [21]. Liu
and Ning propose to use the TESLA authentication protocol [28] using the pri-
mary chain to authenticate the end-values of the secondary chain. This approach
has the shortcoming that the hierarchical chain can only be used in conjunction
with the TESLA authentication protocol, as they propose to authenticate the
end-values of the secondary chain with the TESLA authentication protocol us-
ing the primary chain. The disadvantage of that approach is that the loss of the
authentication message prevents the verifier to authenticate secondary chain val-
ues until the next value of the primary chain is disclosed.5 Another shortcoming
of their approach is that the authentication is staged, as the generator can only
send authentication values at transitions of the primary chain. The tradeoff is
clear, on one hand we would like to have infrequent transitions in the primary
chain, but on the other hand we prefer a short authentication delay.

Note that the all end-values need to be authenticated — both that of the
primary chain and those of all secondary chains. As we discuss above, the au-
thentication mechanism by Liu and Ning has several shortcomings. To overcome
these shortcomings, we propose the Sandwich-chain, enabling efficient authenti-
cation of the end-values of the secondary chain at any moment, without assuming
any additional authentication protocols.

Light Chains. To lower the communication overhead, we introduce the notion of
the light chain. This is a sequence of values derived from their respective prede-
cessors by means of a one-way function that results in a relatively short output.
In contrast, we may refer to standard one-way chains as heavy chains. This per-

5 They propose to send redundant messages to achieve higher robustness against
packet loss, however, this approach increases the communication overhead.

Lecture Notes in Computer Science 7

mits us to refer to a chain consisting of both light and heavy components plainly
as a one-way chain, or more specifically, a hash chain. The way we combine light
and heavy chains is to use a heavy chain as a primary chain, and let each value
of the heavy chain be the root of a light secondary chain.

As described below, we select the hash function used for a particular light
chain from a large family of potential functions, disclosing what function was
used not long before the disclosure of values of the light chain begins — two
different light chains would use two different functions. This way, we avoid the
threat of pre-computation attacks, since an attacker would not be able to begin
building an input-output dictionary until the selection of the function is dis-
closed. Still, it is clear that the shorter the values of the light chains are, the
smaller the effort will be for an attacker to find collisions, or to invert the func-
tion. This presents us with a tradeoff between the savings in communication
cost (related to the size of individual values of the light chain) and the time a
particular light chain can be used. The latter, in turn, puts constraints on the
maximum length of the light chain, given a known rate at which this is traversed
and its values disclosed.

Choice of One-Way Functions. As mentioned before, different one-way functions
may be used for the primary respectively secondary chains. (Moreover, different
one-way functions may be used for different segments of the secondary chain,
but for simplicity, we do not consider that option here.)

The basic security requirement for the generating function of a one-way chain
is one-wayness, preventing an attacker from deriving the following value Vi+1

of the chain when knowing Vi. In addition, the generating function also needs
to provide second preimage collision resistance, which is also known as weak
collision resistance. Weak collision resistance prevents an attacker from finding
another V ′

i+1 after the generator disclosed Vi+1, which also satisfies Vi = H(V ′
i+1)

and Vi+1 6= V ′
i+1. This would enable the attacker to forge one value of the one-way

chain, and prevent the verifier from verifying subsequent values of the one-way
chain, as almost certainly V ′

i+1 6= H(Vi+2).
Candidate one-way functions are based on cryptographic hash functions, such

as SHA-1 [26] or MD5 [30]. Here, the one-way function used to compute the
values of the primary chain is denoted H , and the one-way function used to derive
the values of the ith secondary chain is referred to as hi. We derive the salts using
a third one-way function, which we refer to as Hs. We let H(·) = Hs(·) = hash(·)
and hi(·) = trunc(hash(salti, ·)), where trunc denotes a function that truncates
the input to the desired length.

Another construction that also provides the required security properties are
pseudo-random functions (PRF) [12]. A PRF F has a key K and is often used in
the following construction to provide one-wayness and weak collision resistance:
Vi = FVi+1

(0), where 0 denotes a constant string of zero bits. Note that the
value Vi+1 is used as the key to the PRF. A commonly used instantiation of a
PRF is to use a message authentication code (MAC), for example HMAC is a
popular choice [4]. A pseudo-random permutation (PRP) (e.g., a block cipher)
can also be used as a PRF, if the PRP is only used as many times as the birthday

8 Yih-Chun Hu et al.

bound allows [3]. This construction though often has the disadvantage that the
generator has to run key setup function for the block cipher for each one-way
chain value, which is often inefficient.

Resistance against Birthday Attacks. All previous proposals involving hash chains
appear vulnerable to birthday attacks. More specifically, if an attacker selects
a random seed and computes a hash chain from this, the chances for a colli-
sion between any one of the computed values and a value in an existing chain
C increase with the length of C. This can be avoided by using a well-known
technique6 in which all hash functions used are indexed by their position in the
chain. In other words, in order to compute the image Vi of a value Vi+1, one
would compute the hash of Vi+1 || i + 1 (where || denotes concatenation), as
opposed to only the one-way chain value, as is commonly done. For simplicity
of notation, we do not make this indexing explicit in the descriptions onwards.
For a one-way chain value of m bits, the expected cost for an attacker to find a
pre-image or even a second pre-image is 2m−1 one-way function computations.

Taxonomy of Hash Chain Usage. Though many proposed protocols use hash
chains, we categorize these protocols into three categories: those which use every
element (e.g. [20, 13]), those in which skipping elements is rare (e.g. [8, 14, 34]),
and those in which skipping elements is common (e.g. [28]). In all protocols,
fast traversal at the generator is desirable. In addition, when skipping elements
is common, faster verification is desirable, especially when hash chain elements
are used quickly. In some cases, such as wireless network protocols, network
partitioning can force a node to perform a large number of hash functions to
“catch up;” in these cases, faster verification can significantly improve protocol
responsiveness.

Evaluation Metrics. We use the following five metrics to measure the efficiency of
one-way chain techniques: setup, traversal, verification, storage, and communi-
cation cost. We describe each cost in more detail. The setup cost is measured by
the number of hash function computations to derive the end-value of the one-way
chain. The traversal cost is the average number of hash function computations
that the generator performs to derive each one-way chain value, assuming that
each chain value is consecutively disclosed. For real-time constrained environ-
ments, an upper bound on the traversal cost is desirable. The recently proposed
efficient one-way chain schemes provide an upper bound of O(log(n)) for the
traversal cost [9, 18]. The verification cost is measured in the number of one-
way function computations that the verifier performs to verify a one-way chain
value. The verification cost is usually O(1) if the verifier receives all one-way
chain values, however, a more interesting metric is the verification overhead in
case the verifier needs to “catch up” because it missed many one-way chain val-
ues or started receiving values late, i.e., the verifier may need to traverse a large

6 This technique is attributed to Micali and Leighton, who in an unpublished
manuscript propose the use of this technique to avoid birthday attacks in Merkle
trees.

Lecture Notes in Computer Science 9

part of the one-way chain to verify. Advanced one-way chains feature efficient
mechanisms to “catch up”. The storage cost is measured as the amount of mem-
ory that the generator needs to traverse the one-way chain. The communication
cost measures the bandwidth overhead for distributing one-way chain values. We
introduce the notion of light chains to lower the communication cost.

Requirements for Offline Verification. The chains we describe can be verified
offline; that is, without communicating with the chain generator. However, this
offline verification sometimes requires either reliable delivery or loose time syn-
chronization. Of the chains we describe, the Sandwich-chain and light chains
(Sections 3 and 5) require either reliable delivery or loose time synchronization
to allow offline verification. On the other hand, Comb Skipchains (Section 4) do
not have any special requirements for offline verification.

3 The Sandwich-chain Construction

We previously mentioned why the primary and secondary chains (as Figure 2
shows) have a significant disadvantage over the simple one-way chain: if the
commitment to the end-value of the secondary chain is lost, the verifier has to
wait until the generating value of the secondary chain (i.e., the value of the
primary chain) is disclosed.

We now describe the Sandwich-chain, a new construction which removes this
drawback, and which has several nice properties. Figure 3 shows an example of
a Sandwich-chain.

PSfrag replacements

V0 V1 V2 V3 V4 V5

W0 W1 W2 W3 W4

V10

V11

V12

V20

V21

V22

V50

V51

V52

Salt

Fig. 3. A sandwich chain. The upper horizontal chain is the primary chain; the diagonal
chains are secondary chains; and the lower horizontal chain is used for verification of
end-points of secondary chains. The dotted arrows correspond to salt derivation, which
is used in the computation of the diagonal chains only.

The Sandwich-chain is a combination of a hierarchical one-way chain and
another one-way chain WN . . . W0 used for verification of the end-values of the

10 Yih-Chun Hu et al.

light chain. We now describe how the Sandwich-chain is generated, used, and
how verifiers can authenticate values.

Sandwich-chain Setup. The generator picks VN and WN at random and com-
putes VN−1, . . . , V0, where Vi = H(Vi+1) . For each Vi, the generator derives the
associated secondary chain vi,K , . . . , vi,0 as follows: vi,K = hs(Vi) (where Vi−1

is used as the salt s), and vi,j = hs(vi,j+1). Finally, the generator derives the
W -value as follows: Wi−1 = H(Wi||vi,0||Vi−1). Figure 3 graphically represents
these derivations.

Sandwich-chain Traversal. Similar to the hierarchical chains described above,
the generator uses the values of the light chains one after another, e.g.,

v1,0, v1,1, . . . , v1,K , v2,0, . . . , vN,0, vN,1, . . . , vN,K

. The V -values are disclosed after all the secondary chain values are published,
for example after disclosing vi,K , the generator can send Vi, which is needed for
the salt of Vi+1’s secondary chain and also to authenticate Wi. W -values are
disclosed as necessary, they are not secret, their use is only to authenticate the
end-values of the secondary chain. The Sandwich-chain is traversed using fractal
traversal [18, 9, 33].

Sandwich-chain Value Authentication. Initially, the verifier receives V0 and W0

over an authentic channel, and uses these values to authenticate all subsequent
values. Using the trusted values V0 and W0, the verifier can easily authenticate
the first value of the one-way chain v1,0 by checking that H(W1||v1,0||V0) equals
W0 (this assumes that the verifier also received W1).

We now describe how the verifier authenticates the end-value vi,0 of a general
secondary chain, assuming that the verifier always kept up with receiving and
verifying the chain, thus trusting values Vi−1 and Wi−1. (In Section 3.2, we
describe an efficient verification technique if the receiver did not keep up with the
verification.) In the light chain spanned by Vi, the verifier needs to know Wi to
verify the end-value vi,0. The verifier first computes H(Wi||vi,0||Vi−1) and checks
that it matches the stored Wi−1, in which case both Wi and vi,0 are authentic.
Since value Wi is not secret, the generator can retransmit it periodically. The
value Vi−1 is used as the salt in the secondary chain vi,j , thus Vi−1 also needs
to be transmitted periodically, and can easily be authenticated. As additional
measure to authenticate the secondary chain values, the verifier can also check
that vi,k = hs(Vi) after Vi is disclosed.

3.1 Efficient Authentication Using One-Way Functions

We describe a novel mechanism to authenticate arbitrary values, without using
a MAC function. We assume a secure weak collision resistant one-way function
F (to derive the one-way chain), and a secure one-way function G (to produce
commitments). The generator then generates a one-way chain VN , . . . , V0, where

Lecture Notes in Computer Science 11

Vi = F (Vi+1). We assume that the generator and verifiers are loosely time syn-
chronized, with a maximum synchronization error of T∆. The generator specifies
a regular disclosure schedule for values of the the one-way chain, disclosing Vi at
time Ti = T0 + i ∗ Td, where Td is the time delay between the disclosure of two
values, and T0 is the time of disclosure of value V0. To authenticate a value r,
the generator publishes r′ = H(Vj ||r), where Vj is a value that will be disclosed
in the future. When a verifier gets r, r′, j at time t, it verifies that the generator
did not yet disclose Vj by checking that t + T∆ < Tj . If this condition holds,
it accepts r′ and waits for the disclosure of Vj to authenticate r. The verifier
first verifies the authenticity of Vj , by following the one-way chain to the last
authentic value. If Vj is authentic then r is authentic if r′ = H(Vj ||r). This
authentication is similar in nature to the TESLA authentication protocol, but
it does not require a MAC computation.

3.2 Sandwich-chain Using our Efficient Authentication Technique

Our Sandwich-chain is especially constructed to also enable efficient authenti-
cation of the end-values of the light chain using the authentication technique
described in Section 3.1. This has the advantage that a client who receives au-
thentic values of the Sandwich-chain (i.e., V0 and W0), can efficiently authen-
ticate secondary chain values in chain generated by Vi, without recomputing
previous secondary chains. This approach thus substantially reduces the verifi-
cation overhead for a new verifier that needs to “catch up” to current values of
the chain.

We assume that the primary one-way chain V0, . . . , VN satisfies the require-
ments discussed in Section 3.1, i.e., the values Vi are disclosed after specific times
Ti. A verifier can use the structure of the Sandwich-chain to authenticate the
values of the W -chain without following it all the way back to the last authentic
W value it trusts.

Consider a verifier that is time synchronized, who trusts value V0, and who
joins the transmission at time ti, where Ti < ti < Ti+1. The generator is thus
currently traversing the values spanned by the secondary chain spanned by Vi+1,
as Vi is already disclosed. At this point, the verifier cannot yet authenticate values
vi+1,j it receives, as it may be computationally too expensive to recompute the
Sandwich-chain all the way back to W0. The generator periodically distributes
Wi+1; as long as the verifier gets Wi+1 before time Ti+1 − T∆, the verifier can
later authenticate Wi+1 after it receives Vi+1, Wi+2, and the value vi+2,0. After
successful authentication of value Wi+1, the verifier also knows that value Wi+2

is authentic, and can use the values of the W -chain to immediately authenticate
end-values of the following secondary chains.

Given loosely synchronized clocks, the Sandwich-chain thus enables computa-
tion-bound verifiers to very efficiently authenticate current one-way chain values
(after waiting for a short time delay), without recomputing the majority of the
Sandwich-chain.

12 Yih-Chun Hu et al.

4 The Comb Skipchain Construction

In [17], Hu et al. describe the skipchain mechanism. A skipchain is composed
of a signature chain and a collection of secondary chains. A signature chain
(s0 . . . sx) is a chain of one-time signatures. Each value si of the signature chain
spans a one-time signature scheme, where the one-time signature values are
again reduced to a single value si−1, thus resembling a one-way chain. The value
si can be thought of the private key of the one-time signature, and the value
si−1 is the corresponding public (verifying) key. (Similarly, si−1 and si−2 form
the next private/public key pair.) Hu et al. describe such a signature chain [17]
and propose to use the Merkle-Winternitz signature [10, 23, 32] as the one-time
signature scheme.

Each value si in the signature chain is used to derive a secondary chain
Vi,0 . . . Vi,y , where Vi,y = H(si) and the other values are generated as we describe
in Section 3. In the same vein as the hierarchical chain construction in Section 3,
these light chains represent a single one-way chain of length (x+1)(y+1), where
the jth value is Vb j

y+1
c,j mod y+1, and where y is the length of the secondary

chain.
In this paper, we contribute a novel parameterization and traversal scheme

that provides O(1) computation, while retaining the O(log(n)) storage require-
ment; a significant improvement over the previous O(log2(n)) bound [9].

PSfrag replacements

s
−1 s0 s1 s2 sx−1 sx

V0,0

V0,1

V0,2

V1,0

V1,1

V1,2

Vx,0

Vx,1

Vx,2

sss

Fig. 4. Comb Skipchain, where sy . . . s0 are values on the signature chain, s
−1 repre-

sents the initial verification value, and Vi,0 . . . Vi,2 represent light chains. Each hexagon
in the figure represents one instance of a Merkle-Winternitz signature (a simplified
version of such a signature is shown inside the first hexagon). The s denotes that each
si is used to sign each Vi,0.

Verification of Values of the Secondary Chain. Because values from the sec-
ondary chain cannot be verified through the repeated application of a one-way
function, we must have a separate way of verifying them. Comb Skipchains use a
one-time signature from each signature chain value to authenticate the end-value
of each light chain. In particular, the ith one-time signature is used to sign Vi,0.

Lecture Notes in Computer Science 13

To verify this one-time signature, the verifier follows the signature chain all
the way to a trusted value (in the same way as it follows a standard one-way
chain). Note that the traversal of the primary chain makes previous one-time
signatures redundant. In other words, while traversal in principle allows forgery
of old one-time signatures, synchronization issues makes this a non-issue, just
like knowledge of previously released chain values in general does not pose a
security threat for the applications we consider.

Parameterization and Traversal For a chain of length n, we choose x = n
log(n)

and y = log(n). The important intuition that allows us to achieve O(1) com-
putation is that the fractal traversal of the signature chain already requires
O(log(n)) storage, so we can store an entire secondary chain of length O(log(n))
with no penalty in the asymptotic storage cost. As a result, the traversal of the
secondary chains can be achieved with constant computation; and the traversal
cost of the signature chain O(log(n)) can be amortized over an entire light chain
(length O(log(n))), thus resulting in a constant computation cost per emitted
value. In particular, we perform efficient traversal on the primary (signature)
chain (at cost log(x) memory, and log(x) computation per step), but to amor-
tize the traversal over the y steps in the secondary chain, for O(1) computation.
In addition, we can traverse the secondary chain for O(y) memory and O(1)
computation by storing the entire chain. Finally, we amortize the computation
of the next light chain, which costs O(y) memory and O(1) computation. The
total cost is then O(log(n)) memory and O(1) computation.

Initialization. We perform the initialization necessary for fractal traversal of the
signature chain. We also compute and store the entire first secondary chain.
Finally, we prepare for the initialization of the second secondary chain.

Main routine. First, we perform a partial step in the signature chain. In par-
ticular, we follow the fractal traversal algorithm [9] until one hash operation is
performed, for a cost of 1. After 1

2 log(n) steps are performed, the next signature
chain value is ready. In particular, after Vi, y

2
is emitted, si+1 becomes available.

Next, generate one more step of the next chain. In particular, when emitting
Vi,j , we compute Vi−1,y−j .

Next, set the return value to the appropriate value previously computed.
For example, when emitting Vi,j , we return the value computed when emitting
Vi+1,y−j .

Analysis In our first step, we perform only one hash operation, and a constant
amount of work, so the first step requires O(1) computation and O(log(n)) mem-
ory. Our second step performs one hash operation, so it requires O(1) computa-
tion and O(log(n)) memory. Our third step consists of a single load, so it requires
O(1) computation and O(log(n)) memory. In fact, the memory used by the sec-
ond and third step can be combined so that together they require just y+1 hash
values to be stored. The hash and signature are also constant time operations,
and hence it also requires O(1) computation. This represents a total cost of O(1)

14 Yih-Chun Hu et al.

computation and O(log(n)) memory, for a memory-times-computation complex-
ity of O(log(n)). Our result substantially improves the previous result which
provides memory-times-computation complexity of O(log2(n)), and establishes
that as a lower bound.

Future Work Comb Skipchains provide other efficiency improvements; for ex-
ample, in our scheme, the setup time is O(n

log(n)). In future work, we intend to

examine the use of hierarchical Comb Skipchains, with multiple levels of signa-
ture chains, as a mechanism for improving setup times.

5 Light Chains

In resource-constrained environments (e.g., sensor networks), communication
bandwidth is at a premium, as data sending and receiving is expensive in terms
of battery energy. To reduce the communication overhead, we propose one-way
chains with reduced value size, but we need to be careful not to introduce new
security vulnerabilities.

A light one-way chain (v0 . . . vn) is a collection of values such that each value
vi = h(vi+1), for 0 ≤ i < n, where h is a one-way function with short output.
That is, while the output of standard hash functions is typically 128 or 160
bits long, the output of h is much shorter, for example 64 bits long. Here, h
is preferably a salted hash function (also referred to as a keyed hash function),
whose output is truncated to some fixed length. Thus, each chain (or segment
of a chain) has a salt s associated to it, which is appended to the input before
the hash function evaluation. The effect of this is that the function h is selected
from a family of functions, indexed by the salt.

Similar as for standard chains, v0 is called the end-value, and vn the root.
The salt s of a chain (or chain segment) has to be selected before the chain is
computed from the root value, but does not have to be released until a verifier
needs it to verify the authenticity of a chain value.

Shorter sized values may introduce pre-computation attacks, such as the
attack proposed by Hellman [16]. For a chain with m-bit values, the attacker
performs 2m operation to setup a graph of size 22·m/3. Given the graph, the
attacker performs 22·m/3 operations to find a pre-image of a value. To thwart
this attack, we use two countermeasures: salted hash functions, as described
below; and indexed hash functions as described in Section 2 in the paragraph
“Resistance against Birthday Attacks”.

Use of Salts. We have that outputs of hi may be substantially shorter than
outputs of H . Thus, while inverting H will be assumed to be computationally
intractable, it may be possible to invert, or find collisions for, hi given sufficient
time. Since we want it to be infeasible to invert hi during the time period it is
associated with, it is important that this time interval is shorter than a lower
estimate of the time it takes to invert the hi. Evidently, it is also crucial to
prevent pre-computation attacks, which is where the salt comes in.

Lecture Notes in Computer Science 15

The effect of salting the hash function hi is that of randomly selecting this
function from a large family of such functions. Given sufficiently long salts, this
effectively makes it infeasible to compute a table of all input-output pairs of
hi without knowledge of the salt. Since the salts are not made public until just
before the time period their use is associated with, this prevents pre-computation
attacks.

PSfrag replacements

V0

V1 V2

V3

V4

V5

v10

v11

v12

v20

v21

v22

v50

v51

v52

Salt

Fig. 5. Salt-derived light one-way chain.

6 Discussion

We give two examples of instances in which our constructions are useful. Table 1
summarizes these results. In our examples, we use light chains with 64 bits of
security, and heavy chains with 80 bits of security. For the one-time signatures in
Comb Skipchain, we use the Merkle-Winternitz construction [10, 23, 32] to sign
the 64 bits of the end-value of the light chain. To sign 64 bits, we use 32 signature
chains of length two, and three checksum chains of length two, and one checksum
chain of length one. This construction requires 71 hash function computations to
generate one signature, and on average 35 hash function computations to verify.

Our first application is a sensor network with resource-limited sensors. In the
sensor network, the nodes use the TESLA protocol to broadcast authentic data
over their lifetime, which we assume to be 10 years. To achieve a relatively low
authentication delay, yet have short one-way chains, the sensors use one value of
the one-way chain during one second, thus requiring a total of 315 million values
over the lifetime of the sensor network. We first study the overhead if we use the
Sandwich-chain. One of the main features of the Sandwich-chain is that it has a
low communication overhead and enables fast verification of chain values in case
a receiver was absent for some time or is newly deployed. To select the length
of the secondary chain (the light chain), we say that a sensor should wait for at

16 Yih-Chun Hu et al.

Table 1. Performance of our structures as compared to a traditional hash chain. Stor-
age is based on 3 hash computations per step in the reverse hash chain traversal. This
results in prohibitive overhead for Sandwich-chains, which have competitive storage
requirements when 5 computations can be performed in each step.

Construction Storage Worst-Case Verify Network Overhead

Sensor Network (3.15 × 108 elements, 1ms per hash)

Sandwich-chain Very High < 3 min < 0.1 bits/value
Comb Skipchain 1188 bytes 7.71 days 1.43 bits/value
Hash Chain 5330 bytes 219 days 0

Micropayments (1.1 × 109 elements, 1µs per hash)

Comb Skipchain 718–1246 bytes 36.8 sec 1.34 bits/value
Hash Chain 7310 bytes 18.5 min 0

most 30 minutes to efficiently authenticate the chain values after deployment,
thus the light chain has a length of 30 · 60 = 1800 values. The primary chain
thus has a length of 315, 360, 000/1800 = 175, 200 values. The setup cost is
315, 360, 000 + 175, 200 + 175, 200 = 315, 710, 400 hash function computations
to compute V0 and W0. Using fractal traversal [18, 9, 33], the traversal requires
O(log(n)) per-value computation and storage. The verification overhead is low,
even if a sensor joins the network close to the end of its lifetime, it can verify
the V -value in under three minutes, assuming that a hash function computation
requires 1ms. In contrast, traditional one-way chains would take 1800 times
longer. The communication cost is very low, as the light chain values are only 64
bits long, and only two heavy chain values of length 80 bits need to be disclosed
after every 1800 values.7

To lower the traversal and setup cost at the expense of a higher communi-
cation overhead, we can use the Comb Skipchain mechanism. In choosing the
length of the light chains, we want a length that allows a the signature chain
to be computed using a single hash operation per emitted element. Since each
step in the signature chain requires 71 hash operations, and since each step
in the signature chain requires a logarithmic number of applications of G, we
need at least 71 · log2(315, 360, 000) = 2004.5 elements in the light chain. Since
we use Sella’s traversal [33], we can store ` elements from a chain of length
`(`+1)

2 and provide reverse traversal with a single computation. As a result, we
pick a minimum ` that allows us to traverse a chain of length at least 2005.
In this case, ` = 63, and each light chain is 2016 elements long. Our signature
chains are of length 315, 360, 000/2016 = 156, 429, and initialization requires
traversing one light chain (2016 hash functions) and the entire signature chain
(156, 429 ·71 = 11, 106, 459 hash functions), for a total setup time of 11, 108, 475.
Traversal costs are 1 for each of the current light chain, the next light chain, and
the signature chain, for a total of 3 applications. To perform these traversals,

7 For robustness against packet loss, the generator may periodically publish the latest
V and W values required for authentication.

Lecture Notes in Computer Science 17

we require two sets of light chains to be stored simultaneously, for a storage
cost of 63 values per chain. In addition, log2(315, 360, 000/2016) < 18 values are
needed for the top chain, for a total of 144 values. By contrast, Sella’s scheme
requires 533 values to traverse the chain at a cost of three operations per el-
ement. The verification overhead is often lower than a traditional hash chain;
for example, if a sensor joins the network close to the end of its lifetime, it can
verify a chain element over 28 times faster than with a traditional hash chain.
The added communication cost is fairly low; again, the light chain values are
only 64 bits long, and a 360 byte signature needs to be disclosed every 2016 val-
ues (possibly more often for robustness). This represents roughly 1.43 additional
bits per chain value.

Another example is for micropayments for Internet or peer-to-peer traffic.
Such payments could be used, for example, to pay an ISP for dialup access, in
open-access wireless hotspots, or to pay for content transfer from a peer-to-peer
file sharing network. To estimate pricing for such services, we consider that cable
modem pricing is around $45 for a cap of 15 GB [7], and assume that the ISP
requires revenue of $45 for 5 GB of transfer. If a micropayment provider sold
in increments of $10, then each chain will be 1.1 billion elements long. When
using Comb Skipchains, we compute the length of the light chains as above:
71 · log2(1, 111, 111, 111) = 2133.5, so we choose ` = 65 and a light chains length
of 2145. As a result, our signature chains are of length 1, 111, 111, 111/2145 =
518, 001. Initialization then requires 2145+518, 001 ·71 = 36, 780, 216 hash func-
tions. Again, traversal costs are 1 for each of the current light chain, the next
light chain, and the signature chain, for a total of 3 applications. To perform
these traversals, we require two sets of light chains to be stored simultaneously,
at a cost of 65 hash values each (these can be stored together with just 66 values).
In addition, log2(1, 111, 111, 111/2145) < 19 hash values are stored for top chain,
for a total of 149 hash values (85 if better optimized). By contrast, Sella’s scheme
requires storage of 731 values to traverse the chain at a cost of three operations
per element. The verification overhead is higher than before; if a network node
receives a micropayment close to the end of the chain, it may take 36 seconds to
verify, assuming that a hash function computation requires 1µs. The communi-
cation cost is fairly low; again, the light chain values are only 64 bits long, and a
360 byte signature needs to be disclosed every 2145 values (possibly more often
for robustness). This represents roughly 1.34 additional bits per chain value.

7 Conclusion and Future Work

Our proposed constructions for one-way chains are useful in many settings, to
speed up the current setup, traversal, and verification of one-way chains. Both
constructions can be used as “drop-in” replacements for many current uses of
one-way chains.

The Sandwich-chain is particularly useful in environments with low-bandwidth
communication channels, and where the verifiers are computation constrained

18 Yih-Chun Hu et al.

and may need to “catch up” (i.e., verify a chain value based on a distant trusted
chain value).

The Comb Skipchain construction has a higher communication overhead than
Sandwich-chain, but it provides a very efficient setup mechanism (O(n/ log(n)))
and a very efficient traversal (O(1)) with small storage overhead (O(log(n))).
This construction beats the previously established lower bound for the product
of memory overhead and traversal overhead, which was O(log2(n)). In contrast,
our construction achieves a memory-times-computation complexity of O(log(n)).
This is possible (and does not contradict the previous lower bounds) given that
we move from one-dimensional to two-dimensional (or hierarchical) chains.

Our future work includes investigating deeper hierarchies of our construc-
tions, and to establish general bounds for the one-way chain costs.

References

1. William Aiello, Sachin Lodha, and Rafail Ostrovsky. Fast digital identity revoca-
tion. In Hugo Krawczyk, editor, Advances in Cryptology – CRYPTO ’98, volume
1462 of Lecture Notes in Computer Science. International Association for Crypto-
logic Research, Springer-Verlag, Berlin Germany, 1998.

2. Ross Anderson, Harry Manifavas, and Chris Sutherland. A practical electronic
cash system. personal communication, December 1995.

3. M. Bellare, J. Kilian, and P. Rogaway. The security of cipher block chaining.
In Advances in Cryptology - Crypto ’94, pages 341–358, 1994. Lecture Notes in
Computer Science Volume 839.

4. Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying hash functions for mes-
sage authentication. In Neal Koblitz, editor, Advances in Cryptology – CRYPTO
’96, volume 1109 of Lecture Notes in Computer Science, pages 1–15. International
Association for Cryptologic Research, Springer-Verlag, Berlin Germany, 1996.

5. Giles Brassard, editor. Advances in Cryptology – CRYPTO ’89, volume 435 of
Lecture Notes in Computer Science, Santa Barbara, CA, USA, 1990. International
Association for Cryptologic Research, Springer-Verlag, Berlin Germany.

6. M. Brown, D. Cheung, D. Hankerson, J. Hernandez, M. Kirkup, and A. Menezes.
PGP in constrained wireless devices. In Proceedings of the 9th USENIX Security
Symposium, pages 247–261. USENIX, August 2000.

7. Cable Datacom News. Time warner division implements consumption caps. Pub-
lished at http://www.cabledatacomnews.com/may03/may03-7.html.

8. Steven Cheung. An efficient message authentication scheme for link state routing.
In 13th Annual Computer Security Applications Conference, pages 90–98, 1997.

9. D. Coppersmith and M. Jakobsson. Almost optimal hash sequence traversal. In
Proceedings of the Fourth Conference on Financial Cryptography (FC ’02), Lecture
Notes in Computer Science, 2002.

10. S. Even, O. Goldreich, and S. Micali. On-line/off-line digital signatures. In Brassard
[5], pages 263–277.

11. M. Fischlin. Fast verification of hash chains. In RSA Security Cryptographer’s
Track 2004, pages 339–352. Springer Verlag, 2004. Lecture Notes in Computer
Science, Volume 2964.

12. Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random
functions. Journal of the ACM, 33(4):792–807, October 1986.

Lecture Notes in Computer Science 19

13. Neil Haller. The S/KEY one-time password system. RFC 1760, February 1995.
14. Ralf Hauser, Antoni Przygienda, and Gene Tsudik. Reducing the cost of security

in link state routing. In Proceedings of the Symposium on Network and Distributed
Systems Security (NDSS ’97), pages 93–99, San Diego, California, February 1997.
Internet Society.

15. Ralf Hauser, Michael Steiner, and Michael Waidner. Micro-payments based on
iKP. In 14th Worldwide Congress on Computer and Communications Security
Protection, pages 67–82, C.N.I.T Paris-La Defense, France, June 1996.

16. Martin Hellman. A cryptanalytic time-memory trade-off. IEEE Transactions on
Information Theory, 26(4):401–406, July 1980.

17. Yih-Chun Hu, Adrian Perrig, and David B. Johnson. Efficient security mechanisms
for routing protocols. In Network and Distributed System Security Symposium,
NDSS ’03, pages 57–73, February 2003.

18. M. Jakobsson. Fractal hash sequence representation and traversal. In Proceedings
of the 2002 IEEE International Symposium on Information Theory (ISIT ’02),
pages 437–444, July 2002.

19. J. M. Kahn, R. H. Katz, and K. S. Pister. Mobile networking for smart dust.
In ACM/IEEE International Conference on Mobile Computing and Networking
(MobiCom’99), Seattle, WA, August 1999.

20. Leslie Lamport. Password authentication with insecure communication. Commu-
nications of the ACM, 24(11):770–772, November 1981.

21. Donggang Liu and Peng Ning. Efficient distribution of key cahin commitments
for broadcast authentication in distributed sensor networks. In Network and Dis-
tributed System Security Symposium, NDSS ’03, pages 263–276, February 2003.

22. Mark Lomas, editor. Security Protocols—International Workshop, volume 1189
of Lecture Notes in Computer Science, Cambridge, United Kingdom, April 1997.
Springer-Verlag, Berlin Germany.

23. Ralph C. Merkle. A digital signature based on a conventional encryption function.
In Carl Pomerance, editor, Advances in Cryptology – CRYPTO ’87, volume 293
of Lecture Notes in Computer Science, pages 369–378, Santa Barbara, CA, USA,
1988. International Association for Cryptologic Research, Springer-Verlag, Berlin
Germany.

24. Ralph C. Merkle. A certified digital signature. In Brassard [5], pages 218–238.
25. Silvio Micali. Efficient certificate revocation. Technical Report MIT/LCS/TM-

542b, Massachusetts Institute of Technology, Laboratory for Computer Science,
March 1996. Technical memo.

26. National Institute of Standards and Technology (NIST). Secure hash standard,
May 1993. Federal Information Processing Standards (FIPS) Publication 180-1.

27. Torben Pryds Pedersen. Electronic payments of small amounts. In Lomas [22],
pages 59–68.

28. Adrian Perrig, Ran Canetti, J.D. Tygar, and Dawn Xiaodong Song. Efficient
authentication and signing of multicast streams over lossy channels. In IEEE
Symposium on Security and Privacy, May 2000.

29. Adrian Perrig, Robert Szewczyk, Victor Wen, David Culler, and J. D. Tygar.
SPINS: Security protocols for sensor networks. Wireless Networks, 8(5):521–534,
September 2002.

30. Ronald L. Rivest. The MD5 message-digest algorithm. Internet Request for Com-
ment RFC 1321, Internet Engineering Task Force, April 1992.

31. Ronald L. Rivest and Adi Shamir. PayWord and MicroMint: Two simple micro-
payment schemes. In Lomas [22], pages 69 – 88.

20 Yih-Chun Hu et al.

32. Pankaj Rohatgi. A compact and fast hybrid signature scheme for multicast packet.
In Gene Tsudik, editor, Proceedings of the 6th ACM Conference on Computer and
Communications Security, pages 93–100, Singapore, November 1999. ACM Press.

33. Yaron Sella. On the computation-storage trade-offs of hash chain traversal. In
Proceedings of Financial Cryptography 2003 (FC 2003), 2003.

34. Kan Zhang. Efficient protocols for signing routing messages. In Proceedings of the
Symposium on Network and Distributed Systems Security (NDSS ’98), San Diego,
California, March 1998. Internet Society.

