
Rethinking Passwords to Adapt to Constrained Keyboards

Markus Jakobsson
Extricatus LLC

Mountain View, CA 94041
markus@extricatus.org

Ruj Akavipat
Computer Engineering Department

Faculty of Engineering, Mahidol University
Nakhon Pathom, Thailand

ABSTRACT
We describe and analyze a variant of the traditional pass-
word scheme. This is designed to take advantage of stan-
dard error-correcting methods of the types used to facilitate
text entry on handsets. We call the new approach fast-
words to emphasize their primary feature compared to reg-
ular passwords. Compared with passwords, fastwords are
approximately twice as fast to enter on mobile keyboards,
and approximately three times as fast on full-size keyboards.
This is supported by user studies reported on herein. Fur-
thermore, these user studies show that fastwords also have
considerably greater entropy than passwords, and that their
recall rates are dramatically higher than that of passwords
and PINs.

The new structure permits a memory jogging technique
in which a portion of the fastword is revealed to a user who
has forgotten it. We show that this results in boosted re-
call rates, while maintaining a security above that of tradi-
tional passwords. We also introduce the notion of equiva-
lence classes – whether based on semantics or pronunciation
– and describe uses, including voice-based authentication.
The new technology does not need any client-side modifica-
tion.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: Authentication; K.4.4
[Electronic Commerce]: Security

General Terms
Authentication, Security

Keywords
Error correction, fastword, handset, mobile, password

1. INTRODUCTION
Security protocols have developed at a pace largely match-

ing the development of online threats, but passwords remain

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM CCS Submission
Copyright 2011 ACM X-XXXXX-XX-X/XX/XX ...$10.00.

the same – in spite of increasing pressure on authentication
mechanisms [4]. Mobile authentication, in particular, poses
new problems due to the limitations of handset keyboards
[14].

Text entry on handsets is time-consuming and error prone,
and, as a result, auto-correction and auto-completion meth-
ods are ubiquitous. However, auto-correction and auto-
completion only work for text – not for password entry. This
is due to the fact that good passwords are much like poorly
spelled words, and that error-correction techniques help re-
move poor spelling. While the dictionaries used by error-
correction techniques can be augmented with words they
should recognize, it is naturally not a good idea to augment
them with passwords – even though it would help enter-
ing these. Therefore, better error correction techniques help
maintain usability of text entry as we move towards smaller,
feedback-free on-screen keyboards. However, they do not
help us enter traditional passwords, which therefore are be-
coming harder to input, relatively speaking. This is likely
to give rise to increased reliance on password managers and
short passwords – neither of which bode well for bottom-line
user security.

A recent study by Jakobsson et al. [7] reports that con-
sumers are only slightly less frustrated by entry of text and
passwords on handsets than they are of slow web connections
on such devices, and much more annoyed with all of these
than lack of coverage and poor voice quality. In a survey
we performed, two of five users expressed annoyance with
entering passwords on handsets, and one of five stated that
they avoid situations that require them to enter passwords
on handsets.

This paper addresses the question of how to facilitate
human-machine authentication on input-constrained devices.
To benefit from error correction techniques, we need to per-
mit dictionary words. At the heart of our solution is the in-
sight that dictionary words are easy to enter if error-correction
is enabled – and that a sequence of dictionary words becomes
a secure credential. We refer to this as a fastword.

To make our proposal concrete, let’s consider an example.
As a user sets up an account or changes access credentials,
he is offered the possibility of selecting a “mobile friendly”
credential. A particular user who opts to do this may choose
the fastword “frog work flat”, which might correspond to a
mnemonic of “I ran over a frog on my way to work, and now
I have a flat frog under the tire.”1

1Research into human memory suggests that colorful
phrases are easier to recall than more mundane ones, but
this is orthogonal to the work described herein.

Our example system would accept the fastword“frog word
flat”as a strong credential, given that the frequencies2 of the
three words in English language are 2−17.0, 2−10.6 and 2−14.5

(resulting in a product of frequencies of 2−42.3); and that the
3-gram frequency is 2−49.5. The latter is the frequency in
English language of the three words together. In contrast,
the four-word fastword “I love you honey” might be rejected
in spite of the fact that the product of word frequencies
(2−7.8, 2−11.8, 2−7.8 and 2−16.3) is 2−43.7, since the frequency
of the 4-gram is only 2−25.8.

The frequency measures described above do not reflect
how secure a credential is against an adversary who tries the
k most common credentials, but how secure it is on average.
However, by using a database of frequencies of keywords in
previously registered fastwords – and not only considering
their frequencies in English language – the system can turn
down fastwords that are starting to become too common,
thereby avoiding the “most popular credential” attack. This
is analogous to the work by Schechter et al. [16] in the
context of traditional passwords.

We do not permit keywords to be selected as names3, or
many users may be tempted to select names of friends and
family members – which are often possible to gather from
social networks. It is possible to implement any such policies
by simple changes on the backend; it is also much easier to
enunciate the policies in the context of our proposed solu-
tion than it is for traditional passwords since we can easily
parse fastwords on a component level. Any fastword that is
considered insufficiently strong will be refused; the user can
either simply be told to enter a new one, or be told of the
rule that caused the fastword to be rejected.

The proposed solution has three main benefits: (1) The
increased speed and convenience it provides – measured in
terms of the time it takes to enter a credential; (2) the im-
proved security – both in terms of the average and minimum
security; and (3) substantially higher recall rates than pass-
words and PINs. These rates are further boosted by the use
of hints given to a user who has forgotten his or her fastword
– for the fastword “frog work flat,” the hint4 might be the
word “frog”. This maintains sufficient security as long as the
frequency measures of the remaining words are sufficiently
low.

Our new structure allows for a class of new features that
are not supported by the traditional password paradigm –
such as voice-based entry and the use of equivalence classes.
Equivalence classes – such as normalizing different tenses of
verbs – permits the adaptation of the authentication mecha-
nism to how people remember and enter credentials. This in-
cludes order invariance –“flat frog work’ is considered equiv-
alent to “frog work flat”. It also includes synonyms (making
“fat cat bite” equivalent to “chumpy kitty bite”) and homo-
phones and their approximations (making “red flower fly”
equivalent to “read flour fry”). The latter helps with voice

2We use the Microsoft N-Gram Service to assess word fre-
quencies; alternative services may result in slightly different
estimates.
3Many names are not found in dictionaries; those who are
can easily be excluded in an automated manner, given the
labeling of words in common dictionaries. In Webster, for
example, all names are labelled biographical name.
4For a particular fastword, one and the same word would
always be the hint. This could be the first word or the least
common word, for example.

entry of credentials.
Yet another benefit of our proposed technique is that it

allows for a crude determination (on the backend) of the
degree of correctness of a given login attempt, in contrast to
what can be done in traditional password systems. While
this type of data should never be fed back to the user (or it
can be used as an oracle to attack the system), it can aid
in the collection on analytics on the backend. The fuzziness
is achieved at the cost of a slight expansion of the records
used to store salted and hashed credentials, but without any
associated reduction of security.

Outline: We begin by describing the related work (sec-
tion 2). We detail the basic structure of our proposal in sec-
tion 3 – both from the point of view of the user experience
and in terms of the backend solution. We then describe how
to achieve an extended feature set in section 4. As exam-
ples of such extended features are voice-entry of fastwords
and hints given to users who fail to log in. We report on
a usability study in section 5, wherein we compare recall
rates for different types of credentials. We then describe
our adversarial model and provide security analysis of our
proposal in section 6. In section 7, we report on a second
usability experiment that lets us establish speed of entry for
passwords and fastwords – for both handsets and traditional
keyboards.

2. RELATED WORK
Typical typists enter on average 33 words per minute on

a regular keyboard, according to a study by Karat et al. [8].
MacKenzie and Soukoreff [12] estimate that the mean entry
rate is typically in the range of 15 to 30 words per minute
for on-screen keyboards without error correction, while Kris-
tensson and Zhai [9] show that it is common for users to
reach 45 words per minute on on-screen keyboards if error
correction is used. It is clear that the entry rates go down
for any of these cases if the user has to make extra key
presses to change case or to shift between letters, numer-
als and “special” characters, but we are not aware of any
previous study that measures the effect of this. It could
be estimated by the approximate increase of the number of
key presses. On an iPhone, for example, each capitalization
costs one extra click, as does each shift to/from numerals
and special characters. This means that an example pass-
word, “flY2theM0On!”, costs 21 clicks – in spite of having
only twelve characters. We performed timing experiments
on various platforms, and found that the amount of time
taken to type simple credentials – such as fastwords or –
almost doubles when using a mobile device instead of a tra-
ditional keyboard.

The handset market is increasingly moving towards soft
buttons, as opposed to hardware keyboards as is standard
for traditional computers. This leads to a higher rate of er-
rors. Lee and Zhai [11] report that when data is entered
using fingers (as opposed to a stylus), then the error rate
is 8% higher for soft buttons than for hard buttons. (This
result is for a situation without tactile or audio feedback,
and where the sizes of the soft and hard buttons were ap-
proximately the same.)

Traditional password strength checking is a heuristic ap-
proach that provides some estimates on the strength of the
credential. Different service providers implement vastly dif-
ferent approaches, which explains why one password may

be considered strong by one provider and weak by another.
Our proposed credential strength checker will still rely on
heuristics, but with an underpinning of quantifiable metrics,
such as the frequencies of single words, pairs of words, and
more generally, any n-tuple of words. This is referred to as
an n-gram. In this study, we use Microsoft’s Web N-Gram
Service [18]. However, the word frequencies can be relative
to any preferred source, such as standard spoken English;
tweets; or already registered credentials – although the lat-
ter must be determined in a way that does not compromise
the integrity of individual credentials. Therefore, while our
proposed strength checker is not perfect, it is based on more
clearly enunciated metrics than password strength check-
ers are, given that our proposed credentials have a simpler
structure than good passwords do.

It is known that the more concrete and meaningful infor-
mation is, the easier it is to remember [3]. We use sequences
of dictionary words to enable easy error correction and sim-
plify recall. We measure both the speed of entering creden-
tials and the recall of these, relative to other common types
of credentials.

The use of dictionary words as credentials is not new.
This approach was used both by Compuserve and AOL in
the mid-eighties. As a user would sign up, he or she would be
assigned a password that consisted of two dictionary words
with some connector. Compuserve, for example, used the
format expressed by the sample password “evening crucial”.
Neither Compuserve’s nor AOL’s scheme can take advantage
of error-correction techniques, nor were they designed to.

S/KEY, a one-time password system for Unix systems,
translates 64-bit one-time passwords to sequences of words
by mapping the bit strings to six words drawn from a public
2048-word dictionary. The use of words in S/KEY was to
improve usability of entering keys, and not to take advantage
of error-correction or mnemonics.

Similarly, Bard [1] proposed a technique in which users
are assigned a collection of words as their credential. In that
scheme, the collection of words is drawn uniformly at ran-
dom from a large set of words that exhibit optimal distance
characteristics from other selectable words. This permits er-
ror correction of words within this dictionary. However, with
words like“abarticular”and“galaxidae”5 being equally likely
to be assigned to a user as “love” and “foot” are, his system
decidedly is not very practical. In contrast, our goals are
pragmatic: To maximize authentication success and speed.
We achieve this by allowing the user to select his or her own
credential. While our error correction does not have theoret-
ically optimal properties, it is practical, and our system can
use standard auto correction and completion algorithms6.

Turning to the security of a credential, it is worth not-
ing that there are two appropriate but very distinct security
measures worth considering. One aims at assessing the com-
plexity of passwords, then equating security with complex-
ity. (This is what traditional password strength checkers

5These are actual examples from [1]. However, while words
known only by linguists could surely be filtered out, it is
indisputable that user-selected credentials have better recall
rates than schemes based on assigned credentials.
6On a handset, this is trivial: We simply do not disable
the auto correction/completion features, as is done for tra-
ditional passwords. It is also possible to have auto correc-
tion/completion on traditional computers, where it can be
added either as a client-side plugin, a javascript snippet, or
a server-side feature.

do.) The other one focuses solely on avoiding the weak-
est (i.e., most common) credentials, since these are what
most attackers try. In a sense, traditional password strength
checkers do this using a manually entered list passwords that
are believed to be weak. Another more elegant approach was
proposed by Schechter et al. [16]. Their technique automat-
ically avoids common passwords, without any explicit iden-
tification of what these are. Our structure supports both
of these approaches. The observed commonality of a fast-
word can be determined using methods analogous to those
described in [16]; moreover, the estimated likelihood can be
computed using the frequencies of words and their combi-
nations – to produce a more fine-grained strength estimate
than is possible for passwords. The ability to break down a
credential into its components and determine the likelihood
of the combination makes it possible to detect and avoid
common phrases – whether by relying on search engines, a
corpus of common phrases, or simply N-gram services. This
makes it possible to avoid weak credentials, which otherwise
is a security risk associated with mnemonic passwords [10].

We describe voice-based entry of fastwords. Voice-based
authentication was studied by Monrose et al. [13]; however,
they focused on how a phrase was spoken – not just what
the phrase was. The voice-based entry in our proposal is not
about biometrics, but simply a matter of what user interface
we rely on for the entry of the fastword. As a result, we can
use standard dictation tools to interpret and perform error
correction of the audio data. Using equivalence classes, we
can avoid problems associated with lack of precision without
having to train the system on the level of individuals.

3. BASIC FEATURE SET
User experience. The user experience of entering fast-
words will be very similar to that of entering passwords –
except with the added benefits endowed by error-correction
and auto-completion features. Instead of entering a pass-
word, the user would simply enter a sequence of words, sep-
arated by spaces. As a user completes a word, the word
can be shown for an instance before each letter of the word
is replaced by a star. Like for traditional passwords, the
user would press enter at the end of the sequence. This user
experience is the same when fastwords are registered (enroll-
ment) and when they are used (authentication.) A credential
strength meter can be used to indicate the quality of what
has been entered during enrollment. A sample user interface
is shown in Figure 1.

Client-side process. In contrast to text entry, traditional
password entry does not rely on error-correction techniques.
The incorrect password submission simply triggers the event
which asks the user to try again. Fastword entry is instead
implemented like regular text entry, which means that auto-
correction and auto-completion are not disabled, and are
therefore automatically performed in the selected language.

Analogous to how characters are often replaced by stars
or other characters during password entry (whether immedi-
ately or as the next character is entered), completed words
can be replaced by stars during fastword entry. This can be
achieved using Javascript or an embedded program such as
Flash or Java applet.

The credential is transmitted over an encrypted channel to
a backend server in charge of enrollment or authentication;

	 Fastword wirk
work	

Figure 1: What the user may see when entering
a fastword. The first word has been replaced by
stars, and the second word is shown with an auto-
correct suggestion. The use of auto correct and auto
complete allows users to type faster and with less
precision. To accept a suggestion, the user simply
presses space and continues writing the next word
– or presses enter or submit to conclude. To turn
down a suggestion – which should typically not hap-
pen in the context of fastword entry – the user taps
the X next to the suggestion.

this can be done in installments (e.g., after each keyword)
or after the entire fastword has been entered. The backend
server then signals back whether the credential is accepted
or not. For enrollment, this corresponds to communicating
the result of a credential strength check (described below).
For authentication it is simply a matter of signaling success
or failure.

Backend process.

• Credential strength checker. As a new creden-
tial is submitted, whether as an account is set up or
to replace another credential, the credential strength
checker is used to verify that the credential is suffi-
ciently strong.

The credential strength checker determines the prod-
uct of single-word frequencies of the words in a cre-
dential, and uses that as one strength estimate. The
strength checker also determines the N-gram frequency
of the sequence, and uses that as a second estimate.
These two security assessments are performed relative
to frequencies in English language (e.g., using the Mi-
crosoft Web N-Gram Service [18]) and relative to al-
ready registered fastwords. If any of these measures
indicates that the new credential is more likely than
a system security threshold (such as 2−30) then the
credential is rejected.

The output of the credential strength checker is the
inverse of the maximum of the the result of the dif-
ferent checks, which is the estimated probability with
which the adversary is expected to be able to guess
the credential. Alternatively, it can be represented as
the minimum of the bits of security of the two tests,
i.e., the negative second logarithm of the associated
frequency.

• Dictionary words. In contrast to typical passwords,
it is not desirable for the user to include non-dictionary
words in a fastword. This is because the auto-completion
feature on the client device would learn these new
terms eventually – which inevitably means to store
them. This is undesirable from a security stance. To
avoid this, the server-side will verify that all words are
dictionary words when the user registers a fastword.

(It would either have to ask the user what language is
used, or infer it from the words used.)

• Enrollment. After a credential has been determined
to be strong, it is accepted – and then stored on the
backend. Just as passwords are salted and hashed to
reduce the risk of internal exposure, so are fastwords.
More specifically, if the credential is a k-tuple of words,
W = (w1, w2, . . . , wk), then hash(W, salt) is stored,
along with the unique value salt.

• Normalization of credentials. We assume the use
of some amount of normalization, whether for robust-
ness or to add system features. An example of the
former type of normalization is for all credentials to
be converted to lower-case representations before they
are salted and hashed. As an example of a feature-
extending type of normalization, one may sort the words
of the fastwords in order to obtain order invariance.

• Conventional authentication. The server looks up
the appropriate user record (given the user name or
other identifier), and salts and hashes the normalized
credential to be verified, comparing the result with the
stored result. More specifically, the value salt is ex-
tracted from the database, hash(W, salt) is computed,
where W is the normalized credential to be verified. If
the result of the hash matches the stored result, the
authentication is said to succeed.

• Application. The technique we describe can be used
both to authenticate from handsets to remote sites,
and to the handsets themselves. In the latter case, an
external service could to be involved during the fast-
word registration phase in order to verify the strength
of the credential – it is not practically feasible to house
this database on the handset. If no strength check is
needed, this outsourcing is also not required.

We report on relative recall rates for different types of
credentials in section refrec; analyze the security of our con-
struction in section 6; and the speed on credential entry in
section 7. In the next section, we describe an extended fea-
ture set based on the techniques we have just described.

4. EXTENDED FEATURE SET
There is an array of new features that are made possible

by the new structure we use – and, in particular, by the de-
composability of the credential. We will now describe some
of these features.

Use of conceptual equivalence classes. One can use
conceptual equivalence classes to allow for variants of a word
to be accepted, which aims as establishing the intent of
the user when she enters a credential. The use of con-
ceptual equivalence classes7 addresses a situation in which
some words are largely interchangeable to users, a situa-
tion which could otherwise potentially create difficulties if
a user has to remember the exact word she used. As a
simple example, an equivalence class may contain different
tenses of a given verb – in order, for example, to avoid a dis-
tinction to be made between the word “run” and the word

7It is straightforward to generate some conceptual equiva-
lence relations, e.g., for tenses and synonyms, but not clear
how to generate a complete collection.

“running”. Equivalence classes may also be used to allow
substitution of words of similar meaning. For example, a
user entering a fastword (mother, stroke, wedding) during
enrollment may later attempt to authenticate using the se-
quence (mom, stroke, wedding) or (mother, rub, wedding)
– depending on whether the person uses multiple terms to
refer to his/her mother, and based on the intended mean-
ing of “stroke”. (There is no attempt to infer the meaning
of a word on the backend in the current proof-of-concept
implementation.)

Given a credential W = (w1, w2, . . . , wk), the backend
computes E(W) = E(w1), E(w2), . . . , E(wk)), where E is
the function that maps a word to its equivalence class. In-
stead of computing hash(W, salt) for a given value salt, the
backend would compute hash(E(W), salt) – whether for the
purposes of enrollment or authentication.

Use of homophonic equivalence classes. One can use
a normalization corresponding to homophonic equivalence
classes to simplify voice-based8 entry of credentials. We as-
sume the use of standard dictation tools to create a map-
ping from the audio sample to a homophonic equivalence
class; this corresponds to the error-correction processing of
text inputs. To avoid having to train the tool on individ-
ual speakers (as dictation tools need), we will combine this
with wide equivalence classes. This will map a large number
of words to the same equivalence class, which will result in
the same selection of equivalence class for different pronun-
ciations and accents.9 The resulting equivalence classes are
phonetic representations of the words of the fastword. To
process the credential, the backend would salt and hash the
sequence of phonetic representations to create the credential
record.

The creation of homophonic equivalence classes, and the
associated credential records could be done in addition to
the other credential records created and maintained on the
backend. During voice-based authentication, the candidate
credential would be verified by being represented by its pho-
netic description, salted, hashed, and compared to the stored
record.

Implementing fuzzy authentication. Instead of storing
a salted hash of the full credential W during the enrollment
process, the backend server stores salted hashes of all ac-
ceptable variants, using the same salt for each such variant.
This is done in a manner that does not reveal the number
of words k of the credential, where k ≤ kmax. If we set
kmax = 4 words, then there are no more than four subsets
of the credential in which one word has been omitted – and
one verbatim credential. If a credential has fewer than kmax

words, then the remaining slots in the record would store
random strings of the correct format. This way, one cannot
infer the value k from a user record on the backend.

To perform fuzzy verification of a submitted credential
during an attempted login, it is checked against each of the
stored credentials by salting and hashing it, comparing the
result to the stored values. One can also verify that it has no

8The issue of eavesdropping is an orthogonal problem to the
management of audio authentication, and is not addressed
in this paper.
9One might argue that it is enough that the sequence sounds
the same during registration and authentication; however,
the use of wide equivalence classes permits text-based regis-
tration followed by voice-based authentication.

more than kmax words, and test all subsets of size kmax − 1
to see if either matches the stored values.

If the submitted credential, after being salted and hashed,
matches the stored full credentials then the login attempt is
successful. If either of the comparisons with the subset-
credentials results in equality, then the submitted credential
is known to be almost correct. It is a matter of policy how to
react to almost correct credentials: The backend server may
consider it a successful login attempt; may permit limited
access; or other system actions may be taken. Users are
not given any feedback describing the degree to which their
credential was correct, or this could be used as a password
breaking oracle.

Implementing hints. If a user forgets her fastword, she
can be given a hint, which is one of the words in her fastword.
It would always be the same word for a particular user and
fastword; it could be either the first word or the word with
the lowest frequency – this is fairly likely to provide the
most help to the user. The hint is also selected so that the
frequency measures of the remaining words in the fastword
correspond to a sufficiently secure credential10. In section 5,
we report on the extent to which hints help users recall a
credential, based on a user study we performed.

Implementing fuzzy blacklists. If a given user’s creden-
tials are believed or known to have been compromised (e.g.,
by a phisher or malware), then the exposed credential can
be placed on a user-specific blacklist. This would block the
user from using this credential – or one with a large overlap
– later on. This is to address the problem that users have
“credential classes”and there is a large degree of reuse – even
after a credential has been corrupted!

5. RECALL RATES
We performed an experiment in which we recruited users

to set up a collection of different credentials, and to attempt
to authenticate between 2-3 weeks later. (On average, the
authentication took place 20 days after the setup.) To in-
centivize participation, we raffled off an iPad2 among all
subjects that completed the study, independently of “per-
formance”. A total of 147 subjects enrolled in the study;
105 completed it.

The aim of the study was to determine what types of
credentials are easiest to recall, relative to each other. For
this reason, we asked subjects not to reuse credentials from
elsewhere, as this would bias their ability to recall these (and
provide the authors with valid real-life credentials for these
subjects, which we did not want to obtain.) Furthermore,
we asked the subjects to promise that they would not write
down any credentials.

We asked subjects to create five types of credentials: a
“simple password” (such as what they might use for a social
networking service); a “strong password” (such as what they
may use for financial transactions; a 4-digit PIN; a 6-digit
PIN; and a three-word fastword. We also asked them to
remember a “super-strong password” – a complex password
we assigned to them. For each credential, we asked them to

10We note that if a hint has ever been given for a given
fastword, without a successful authentication following in
the same session, then the word that corresponds to the
hint should be considered public. This must be considered
in the context of fuzzy verification.

assess how likely they would be to remember it after two-
three weeks. In the second phase of the experiment, we
asked them to recall the credentials and state whether they
believe they managed to do so.

Subjects were considered to have succeeded with an au-
thentication if they managed to enter the credential ver-
batim during the authentication stage, except for the fast-
words, where capitalization, tense, and order were not con-
sidered, and where subjects who entered at least two of the
three words of the fastword were passed. This matches the
way real authentication would be performed. Subjects who
failed the fastword authentication were given a hint – the
first word of their fastword – and asked to try again. Sub-
jects who failed the strong password authentication were
given a second chance, too, but no hint. This, to matches
the way real authentication would be performed.

Table 1: Recall rates for various types of credentials.

Recall rates
Credential User estimate Measured
Simple passwords 24% 14%
Strong passwords 22% 6%
– addl. after reminder 10% 0%
Super-strong passwords 5% 2%
4-digit PIN 47% 26%
6-digit PIN 28% 29%
3-word fastword 25% 36%
– addl. after hint 65% 48%

The recall rates of the various credentials are shown in ta-
ble 1. The subjects’s guess whether they correctly recalled
a credential was done on a 5-point Likert scale, where we
count the responses “I think I did”, “very likely” and “cer-
tain” as a vote of confidence, while “maybe” and “I did not”
were counted as a lack of confidence. We see that people
remember passwords to a lesser extent than they expect,
and fastwords to a greater extent. The lower success rates
for the 4-digit PINs in comparison to the 4-digit PINs (in
spite of the subject’s expectations) could be explained by
the fact that a greater number of subjects reused11 their
4-digit PIN than their 6-digit PIN – probably since 4-digit
PINs are more common than 6-digit PINs – and then failed
to remember which PIN they used.

While this does not show how well people would recall
any of these credentials in a real-life scenario, it shows how
well they remember them relative to each other, in a setting
where they are not strongly incentivized to do well. The
experiment shows that users are able to recall fastwords to a
much greater extent than passwords, and that close to half
of those who forget their fastword are helped by the hint
they are given. For actual success rates, it may be necessary
to perform a more realistic experiment in which users are
better incentivized to recall their credentials.

As part of the study, we collected some demographic infor-
mation. Among other things, we asked subjects to indicate
their profession. We could not identify any relation between
profession and performance, and in particular, did not see

11In spite of being instructed not to reuse credentials, 20% of
the subjects admitted to reusing a 4-digit PIN, in contrast
to only 10% of for 6-digit PINs.

different recall rates among technical people, who were over-
represented in the study in relation to their relative number
in society.

6. SECURITY ANALYSIS
We want to compare the strength of the fastword with

that of traditional passwords. We will begin by reviewing
the approximate security of passwords (section 6.1), followed
by an adversarial model for our context (section 6.2), and
an analysis of the security of fastwords (section 6.3).

6.1 The Security of Passwords
NIST [2] estimates that the distribution of passwords cor-

responds to an entropy of 4 bits for the first character, 2
bits for the next 7 characters, and 1.5 bits per character for
the 9th to the 20th character, and 1 bit per character for
the remainder of the password. 6 bits of entropy is added
when the user is forced to use both upper case and non-
alphabetic characters. This is for traditional passwords –
mobile passwords are likely to have lower entropy due to the
complications of entering them – at least in contexts where
the user is aware of later having to enter the password on a
mobile platform when first selecting it. It is also an average:
There are indications that users select passwords of different
strength on different types of sites. Analysis [6] of passwords
from raided dropboxes suggests that the average password
length was 7.9 characters, which corresponds to an entropy
of approximately 18 bits. While this indicates that the av-
erage probability of guessing a password is 2−18, an attacker
can gain access to a fairly large portion of accounts simply
by trying the most common credentials – this probability is
on the order of 0.22 − 0.9% [17, 5]. (While we do not have
any evidence to support it, there are plenty of indications
that passwords used on handsets are weaker than traditional
passwords.)

6.2 Understanding the Adversary
We consider a remote adversary attempting to gain ille-

gitimate access to an account. We assume that the adver-
sary knows the rules used to approve and reject fastwords
as they are first established, and that he knows system-wide
weights and parameters. We also assume that he knows the
frequencies of individual words and N-grams. We make the
pessimistic assumption that the system does not know the
true frequencies, but that it mis-estimates the true frequen-
cies by up to a factor c.

The adversary wishes to guess the fastword of a given
user. Since we may assume that an adversary will behave
rationally, we know that he will try the most likely candidate
fastwords (that would be accepted by the system) in order
of decreasing likelihood, and that he will try as many as he
is allowed before the account gets locked down.

The adversary will request to get the hint for the fastword
(claiming to be the user to be targeted and claiming to have
forgotten the fastword.) Let’s say that the hint is displayed
to the adversary adversary – as opposed to being sent to an
email address associated with the account. The adversary
then attempts to guess the two missing words in a manner
that maximizes his probability of success. We say that the
adversary wins if he manages to get access to the targeted
account.

Note that we do not focus on security against shoulder
surfing or eavesdropping, nor attacks in which the adver-

sary knows his victim12. These are interesting attacks to
consider, but are not the primary threats in most systems,
and are beyond the scope of this paper.

6.3 The Security of Fastwords
We have assumed an adversary who knows the true fre-

quencies and distributions of words and fastwords, obtains
the hint for a given fastword, and who then attempts to
guess the remaining two words. Let us also assume that a
person will be given n chances to log in to an account from
an unknown IP address.

We will let f̂ denote an upper bound of the the actual
frequencies of the n most likely fastwords, conditional on
the hint. This corresponds to a probability of success for the
adversary of no more than p = 1−(1− f̂)

n
. This is the same

as stating that f̂ = 1 − (1− p)1/n. Since we have assumed
that the system’s understanding of frequencies would be off
by a factor c, this corresponds to requiring that the system’s
belief of the conditional frequency of a fastword, given the

hint, is f ≤ (1− (1− p)1/n)/c.
For concreteness, we may set the maximum probability of

success for the attacker to p = 2−20. Recalling the analysis
in section 6.1, this corresponds to a minimum security of the
solution exceeding the average security of typical passwords
by two bits. We further assume n = 5 and c = 2. These
parameter choices corresponds to a conditional frequency of
the fastword – given the hint – of at most 2−23.3.

In figure 2, we show the conditional probabilities of fast-
words used by subjects in our study, given the word with
the lowest frequency as a hint. In figure 3, we instead plot
the conditional probability based on using the first keyword
in the fastword as a hint. In both graphs, we draw a line at
the probability of 2−23.3, as described above. We see that
61% vs. 64% of the fastwords have conditional probabilities
(for the adversary to succeed) that correspond to a fastword
security that is better than the average password security –
and much better than the lowest password security. If this is
the minimum acceptable security, then fastwords that do not
comply can either be rejected during the enrollment phase,
or the system may refuse to disclose hints for these values.

In figure 4, we show the cumulative distribution of fast-
words in our study, where hints are not given or where these
are sent to the account owner in a way that can be estab-
lished not to be possible to intercept by a typical attacker.
All of these measures use the minimum-security estimate
after both the N-gram frequency and the product of fre-
quencies are computed.

We have not discussed the security against an adversary
who gains access to the salted and hashed fastwords, and to
the hints (which must be stored in cleartext on the backend).
However, this can easily be seen to correspond to the security
shown in figures 2 and 3. We note that if the system policy
is to never give out a hint if the resulting security would fall
below a system threshold, however, then these hints do not
need to be stored.

Turning now to the security of the extended feature set,
we observe that this depends on the number of and sizes of
the equivalence classes. For simplicity, we assume that all
words belong to equivalence classes, and that each such class
contains exactly s elements. The probability of being able to

12It is worth noting that most systems are rather vulnerable
against adversaries who know the victim, due to the poor
security of many password reset schemes [15].

 0

 20

 40

 60

 80

 100

-50-45-40-35-30-25-20-15-10-5

N
u
m

b
e
r

o
f
fa

s
tw

o
rd

 i
n
 p

e
rc

e
n
ta

g
e

Guessing probability in log 2

Figure 2: The figure shows a cumulative distribu-
tion of the conditional probabilities of the fastwords
in our user study, after the word with the lowest
frequency has been given as a hint. 61% of the fast-
words have a security – after the hint is given – that
exceeds the average security of passwords.

 0

 20

 40

 60

 80

 100

-50-45-40-35-30-25-20-15-10-5

N
u
m

b
e
r

o
f
fa

s
tw

o
rd

 i
n
 p

e
rc

e
n
ta

g
e

Guessing probability in log 2

Figure 3: The figure shows a cumulative distribu-
tion of the conditional probabilities of the fastwords
in our user study, after the first keyword of the fast-
word has been given as a hint. 64% of the fastwords
have a security – after the hint is given – that ex-
ceeds the average security of passwords.

guess the sequence will be increased by a factor of sn where
n is a number of words in a sequence. For n = 3 words in a
fastword, as we have used, and for equivalence classes of size
s = 8 words, this means a reduction of security by a factor
29 for the entire fastword, and 26 for the fastword given a
hint.

In other words, a fastword whose probability of being
guessed is 2−42 would be guessable with a probability of
2−33 if equivalence classes are used, and these each have
the maximum size of s = 8. Similarly, if the probability
of success for an adversary would be 2−27 after seeing the
hint, then the use of equivalence classes of size s = 8 would
increase this to a probability of success of 2−21.

 0

 10

 20

 30

 40

 50

 60

 70

 80

-50-45-40-35-30-25-20

N
u
m

b
e
r

o
f
fa

s
tw

o
rd

 i
n
 p

e
rc

e
n
ta

g
e

Guessing probability in log 2

Figure 4: The figure shows a cumulative distribution
of probabilities of the fastwords in our user study.

In figure 5, we show the effects on security of using such
equivalence classes. The graph describes the conditional
fastword probabilities, given the first keyword as a hint.

 0

 20

 40

 60

 80

 100

-50-45-40-35-30-25-20-15-10-5

N
u
m

b
e
r

o
f
fa

s
tw

o
rd

 i
n
 p

e
rc

e
n
ta

g
e

Guessing probability in log 2

Figure 5: The figure shows a cumulative distribu-
tion of the conditional probabilities of the fastwords
in our user study, with equivalence classes of size
s = 8 added. This assumes that the adversary has
obtained the first keyword of the fastword, after this
is given as a hint. 45% of the fastwords have a
security that exceeds the average security of pass-
words. We note that fastwords with lower security
can be rejected at enrollment. Alternatively, hints
can be disabled for these credentials, or smaller sets
of equivalence classes be used.

We note that a realistic implementation will have differing
sizes of equivalence classes. While we use a somewhat simpli-
fied analysis by assuming that all equivalence classes are of
the same size, this does not affect the underlying principles.
Moreover, we note that the sizes of equivalence classes can
be set to balance usability needs and security expectations.

Similarly, if the system accepts a login attempt with only a
partial match to the registered fastword, this affects security.
It is possible to set a threshold for the minimum security

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

-70-60-50-40-30-20

N
u
m

b
e
r

o
f
fa

s
tw

o
rd

s
 i
n
 p

e
rc

e
n
ta

g
e

Guessing probability in log 2

2 out of 3 words
Full sequence

Figure 6: The figure shows the cumulative distri-
bution of the strengths of partial fastwords of one
hundred subjects where two out of the three key-
words are entered and the third is left out. We show
all combinations; thus, the above corresponds to the
average security. For comparison, we also show the
strengths of the complete fastwords for the same set
of subjects. Recall that typical passwords are be-
lieved to have 18 bits [2] of security.

required. For example, if one subset of keywords correspond
to a sufficiently low frequency measure, while another does
not, then the first would be accepted but the second would
not. (At least not without any additional support for the
login attempt.) It is also possible that an authentication
above one level gives access to certain resources, whereas
an authentication above another level gives access to others.
To illustrate the effect of partial matches on security, we
plot the security resulting from inputting only two out of
the three keywords for the fastwords of our one hundred
subjects. In figure 6, we show all combinations of keyword
selections herein – in other words, a total of 300 partial
matches for our 100 subjects.

7. ENTRY SPEED
In addition to being able to assess the security and recall

rates of fastwords relative to traditional passwords, we also
wish to estimate how long it takes to enter these types of
credentials on a typical handset.

This was done in a second user study. We recruited par-
ticipants to enter three fastwords and three passwords on a
device, where the credentials used were drawn at random
from the credentials obtained from the study described in
section 5. Half of the passwords were what we refer to as
“simple” passwords, and the other half were “strong” pass-
words. This corresponds to passwords the participants in
the first study gave as example passwords for social net-
working sites, and for financial sites. Subjects were told to
enter the credentials as fast as they could, and were shown
the times taken to enter these.

We recruited total 234 PC users and 45 mobile users from
Amazon Mechanical Turk, friends and family, and by tweets.
The browser agent was read to determine what type of device
each subject used. The resulting timings are shown in table 7

and figure 7. While error-correction can be added to desktop
text entry using plugins or back-end correction, this was
not done herein, and therefore, the timings for Fastwords on
desktops are upper estimates.

Table 2: Comparing averages and standard devia-
tions of how long users took to type the given texts
in seconds on their desktop computers and mobile
devices.

Average time (standard deviation)
Text Desktop Mobile

Fastword 8.87 (12.70) 16.40 (23.52)
Weak Password 15.07 (64.06) 15.80 (15.76)
Strong Password 26.81 (37.45) 23.99 (21.91)

Mobile Fastword

Desktop Fastword

Desktop Weak Password

Desktop Strong Password

Mobile Weak Password

Mobile Strong Password

 0 0.5 1 1.5 2 2.5 3 3.5 4

Entering speed in sec per character

Figure 7: The figure shows a scatterplot of how
long participants in the study took to enter pass-
words and fastwords on handsets and traditional
keyboards. All times in seconds. Note that we did
not implement error correction for the desktop fast-
words in this study; this could easily be done in a
real-world application, using a scripting language.

We note that the subjects entered unknown credentials –
therefore, there is no speedup due to the “motoric memory”
of having entered the same string time after time. That
effect has to be determined through follow-up studies. How-
ever, we note that it is reasonable to expect that motoric
memory will affect both fastwords and passwords – the ex-
tent to which it will reduce the entry times is likely to depend
largely on the length of the credential.

Conclusion and Future Work.
We have presented a novel authentication scheme and ar-
gued that it offers benefits over traditional passwords in
terms of speed of entry; security; and recall. It also enables
features not currently available for passwords, such as voice-
entry, credential strength checking, and robustness against
mistakes.

In this paper, we measured recall rates a posteriori. It is
an interesting problem how to automatically assess – at the
time of enrollment – the likelihood that a user will be able

to recall a given credential. For example, consider a user
who thinks of using a rocket to fly out in to space and plant
a flag on the moon. He could either enter a credential “fly
space flag” or “rocket moon flag”. The latter credential is
arguably better from the perspective of recall, given a user
who requests a hint. “Fly” could refer to an insect or what a
bird does, and “space” could refer to a key on a keyboard or
a distance between teeth. However, “rocket” and “moon” are
less ambiguous, which makes them better memory joggers.
This example suggests that one may be able to build cre-
dential recall estimators and ask users with credentials that
do not seem likely to be remembered to provide another cre-
dential. Like many of the features described in this paper,
such a feature is made possible by the fact that credentials
can be broken down into components that can be processed.

It is also of interest to consider additional features. For
example, if a user faces a camera and mouths his fastword
(i.e., speaks it with no sound), can the device infer the cre-
dential from his lip movements with sufficient precision? If
that were possible, it would provide us with an elegant way
of avoiding attacks based on eavesdropping and shoulder
surfing, given that the average person is not very good at
lip reading.

We believe the novel structure we have proposed has the
potential of offering many new helpful features; we have de-
scribed some, but believe that there are many more pos-
sibilities to be unearthed, given the possibilities offered by
being able to identify and process conceptual components
of the credential. We hope that our paper will be a first
step towards improving authentication, and in particular,
authentication on input-constrained devices.

Acknowledgments
Many thanks to Richard Chow, Lucky Green, Bill Leddy,
Debin Liu, Alon Nir and Liu Yang for helpful feedback on
previous versions of the manuscript, and to Hampus Jakob-
sson for helping to recruit subjects.

8. REFERENCES
[1] G. Bard. Spelling-error tolerant, order-independent

pass-phrases via the Damerau-Levenshtein string-edit
distance metric. In Proceedings of the Fifth
Australasian Information Security Workshop (Privacy
Enhancing Technologies) (AISW 2007), 2007.

[2] W. E. Burr, D. F. Dodson, R. A. Perlner, W. T. Polk,
S. Gupta, E. A. Nabbus, C. M. Gutierrez, J. M.
Turner, and A. Director. Draft i draft special
publication 800-63-1 electronic authentication
guideline, 2008.

[3] H. Ebbinghaus. Memory: A contribution to
experimental psychology, 1885.

[4] C. Herley, P. C. van Oorschot, and A. S. Patrick.
Passwords: If we’re so smart, why are we still using
them? In Financial Cryptography, pages 230–237,
2009.

[5] Imperva. Consumer password worst practices,
http://www.imperva.com/docs/wp consumer password
worst practices.pdf.

[6] M. Jakobsson and D. Liu. Bootstrapping mobile PINs
using passwords. In W2SP, 2011.

[7] M. Jakobsson, E. Shi, P. Golle, and R. Chow. Implicit
authentication for mobile devices. In HotSec’09:

Proceedings of the 4th USENIX conference on Hot
topics in security, pages 9–9, Berkeley, CA, USA,
2009. USENIX Association.

[8] C.-M. Karat, C. Halverson, D. Horn, and J. Karat.
Patterns of entry and correction in large vocabulary
continuous speech recognition systems. In CHI ’99:
Proceedings of the SIGCHI conference on Human
factors in computing systems, pages 568–575, New
York, NY, USA, 1999. ACM.

[9] P.-O. Kristensson and S. Zhai. Relaxing stylus typing
precision by geometric pattern matching. In IUI ’05:
Proceedings of the 10th international conference on
Intelligent user interfaces, pages 151–158, New York,
NY, USA, 2005. ACM.

[10] C. Kuo, S. Romanosky, and L. F. Cranor. Human
selection of mnemonic phrase-based passwords. In
Proceedings of the second symposium on Usable
privacy and security, SOUPS ’06, pages 67–78, New
York, NY, USA, 2006. ACM.

[11] S. Lee and S. Zhai. The performance of touch screen
soft buttons. In CHI ’09: Proceedings of the 27th
international conference on Human factors in
computing systems, pages 309–318, New York, NY,
USA, 2009. ACM.

[12] I. S. MacKenzie and W. Soukoreff. Text entry for
mobile computing: Models and methods, theory and
practice. In Human-Computer Interaction, volume 17,
pages 147–198, 2002.

[13] F. Monrose, M. K. Reiter, Q. Li, and S. Wetzel.
Cryptographic key generation from voice. In In
Proceeedings of the 2001 IEEE Symposium on Security
and Privacy, pages 12–25, 2001.

[14] M. Rothman and B. Wilson. Authentication death
match: Mobility vs. passwords (and why passwords
will lose), Webcast, May 17, 2011.

[15] S. Schechter, A. J. B. Brush, and S. Egelman. It’s no
secret. measuring the security and reliability of
authentication via secret questions. In In Proceedings
of IEEE Symposium on Security and Privacy, pages
375–390, 2009.

[16] S. Schechter, C. Herley, and M. Mitzenmacher.
Popularity is everything: A new approach to
protecting passwords from statistical-guessing attacks.
In Proceedings of HotSec 2010, 2010.

[17] B. Schneier. Myspace passwords aren’t so dumb,
Wired, Dec. (2006).

[18] K. Wang, C. Thrasher, E. Viegas, X. Li, and B. Hsu.
An overview of Microsoft web N-gram corpus and
applications. In Proceedings of the NAACL HLT 2010
Demonstration Session, HLT ’10, pages 45–48,
Morristown, NJ, USA, 2010. Association for
Computational Linguistics.

APPENDIX
A. SAMPLE STORIES AND FREQUENCIES

We are interested in understanding how people choose
fastwords. In a separate experiment not reported on in the
above, we asked subjects to write down a memorable story
and then, from this, select three words that would constitute
their credential. We did this to understand how well people
can extract the important words from their memorable sto-

ries. We list a representative sample of the stories here. For
each story, we underline the three keywords (provided by
the user) that make up the fastword for that story and pro-
vide the associated single-word frequencies in parenthesis.
Each story starts with a label that is the 3-gram frequency
of fastword and the maximum of the 3-gram frequency and
the product of the single-word frequency.

• (2−53.0,2−48.8) “Back in February I lost my job due to
the company downsizing (2−20.1) I was worried (2−16.7)
about how to pay my bills but managed to find a better
(2−12.1) job in 3 days.”

• (2−55.2,2−43.2)“My mother (2−13.8) had a stroke (2−15.7)
one week before my wedding (2−13.7)”.

• (2−61.6,2−53.4)“Up until recently, I always thought penguins

(2−17.5) were the size of humans (2−15.9). I’m in my
twenties (2−20.1).”

• (2−49.9,2−49.9) “When I was in college I went to a wed-
ding which didn’t happen. The bride (2−16.3) was left
at the altar. The minister performing the ceremony
had to tell the assembled family and friends that there
would be no wedding (2−13.7). Since all the food was
prepared and the hall rented, we had the reception
anyway. The jilted (2−22.7) bride-to-be walked around
wistfully saying : I just wish he’d come back”

• (2−34.9,2−32.9) “My good friend Shawn (not a dictio-
nary word; frequency not available) hung (2−17.2) him-

self 10 years ago this Halloween (2−15.8) because he
was depressed about a girl he liked who didn’t have the
same feelings toward him.” – This would not have been
accepted as a fastword, since “Shawn” is not a dictio-
nary word.

• (2−43.5,2−43.5) “I left my house one day to find my
bicycle (2−16.4) had been stolen (2−16.5). Later, I saw
it outside the convenience store, so I waited there for
the thief. That’s how I met my wife (2−14.3)!”

• (2−53.0,2−50.4)“One day I was driving on the freeway in
a major city. I was driving an older model car that only
had a lap belt for a seat belt. As I was driving along, a
highway patrol pulled up in the lane next to me, pointed
at me, and then indicated his shoulder strap. He was
motioning me to put on my seat belt. I tried to motion
back to him that I was wearing a seat belt by pointing
down at my lap. The cop immediately put on his lights
and made me pull over. When he came up to my car
window, I was puzzled by why I was pulled over. He
said in an angry voice, ‘You think you’re pretty funny?’
I then realized: When I had pointed down at my lap, he
thought I was making an obscene gesture! He thought I
was pointing down at my private parts and was making
a crude suggestion. When he realized I was only trying
to explain I was wearing a lap safety belt, he burst out
laughing and so did I. ‘Okay,’ he said. ‘Get the hell out
of here’.” – This subject provided the keywords “cops,
driving, goofy”. While these keywords are actually not
part of the expanded story, that is not a problem – the
real system would not ask for the long story, but only
for the keywords. The frequencies of the three keywords
are (2−17.2,2−14.1,and 2−19.2).

A quick look at these potential fastwords suggest that
the way subjects are selecting keywords from the story in
a meaningful manner.

